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What is a Dirichlet Process?

G ∼ DP(α,G0), G ∈ A, α ∈ R, α > 0

G0 is a probability distribution (measure) defined on the range A.
DP, a Dirichlet process, then satisfies the property

[G(a1), . . . , G(an)]T ∼ Dir(αG0(a1), . . . , αG0(an))

for any finite partition of A,
⋃n
i=1 ai = A, where Dir is the

Dirichlet distribution . . .

. . . but this is not very intuitive. Alternatives:

• A generalisation of the Dirichlet distribution.

• The stick breaking construction.

• The Chinese restaurant process.



Dirichlet Distribution

x ∼ Mult(X), X ∼ Dir(a), x ∈ H

a = Length n parameter vector; a ∈ Rn, ai > 0.

Dir = Dirichlet distribution; P (X|a) ∝
∏n
i=1X

ai−1
i .

X = Length n parameter vector; X ∈ Rn, Xi > 0,∑
Xi = 1 (On a (n− 1)b-simplex).

Mult = Multinomial distribution (Categorical if∑
xi = 1.); P (x|X) ∝

∏n
i=1X

xi
i .

x = Counts of how many of each entry have been
drawn; x ∈ Nn.

H = Meaning of the entries i ∈ {1, . . . , n}, e.g.
days of the week (n = 7).

α

X

xj

j ∈ J



Distribution to Process

x ∼ Mult(X), X ∼ Dir(a), x ∈ H

• Set a ∈ Rn = [αn , . . . ,
α
n ]T , where α ∈ R, α > 0.

• As n→ inf we get the Dirichlet Process . . .

• . . . mathematically. But there are conceptual differences.



Differences

x ∼M(G), G ∼ D(α,G0), x ∈ H

Finite Case Infinite Case

H = Set of arbitrary atoms, of
size n.

H = Range of the base mea-
sure, G0

G0 = Not used. G0 = Base measure, a probabil-
ity distribution over the atoms.

α ∈ Rn = Parameter for the
Dirichlet distribution.

α ∈ R = The concentration pa-
rameter.

D = Dirichlet distribution. D = Dirichlet process.
G = Finite vector of length n,
sum of all entries is 1.

G = A probability distribution
that can be interpreted as an
infinite length vector.

M = Multinomial distribution. M = G.



Nonparametric Bayesian Mixture Model

α

V, n, µ′ G

µi,Λi

xi

i ∈ D

G ∼ DP(α, P (µ,Λ))
Λ ∼ W(V, n) (W = Wishart distribution)

µ ∼ N (µ′, (nΛ)−1) (N = Gaussian distribution.)

(µi,Λi) ∼ G
xi ∼ N (µi,Λ

−1
i )

• This is a DP Gaussian Mixture model.

• An infinite number of components means it
will assign the probability mass to the
components it needs, and set the rest to
(almost) zero.

• It learns the right number of components!

• (Often a prior (Gamma) would be put on α)



Stick Breaking Construction

• A constructive definition of a DP - probably the most
straightforward.

• Typically used directly when employing variational methods.

• Makes explicit the following properties of G:
• It is discrete, even if the base measure is not (The probability

of drawing the same entity twice is not zero.).
• An infinite number of different entities can be drawn

(Assuming the base measure is not finite.).



Stick Breaking Construction

Remaining Stick→
l0 = 1

v1 ∼ beta(1, α)

β1 = 1− v1
v2 ∼ beta(1, α)

β2 = v1(1− v2)
v3 ∼ beta(1, α)

β3 = v1v2(1− v3)

. . .
vn ∼ beta(1, α)

βn = (1− vn)
∏n−1
i=1 vi

. . .

Base Measure→
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Stick Breaking Construction

Remaining Stick→
ln =

∏n
i=1 vi

v1 ∼ beta(1, α)

β1 = 1− v1
v2 ∼ beta(1, α)

β2 = v1(1− v2)
v3 ∼ beta(1, α)

β3 = v1v2(1− v3)

. . .
vn ∼ beta(1, α)

βn = (1− vn)
∏n−1
i=1 vi

. . .

Base Measure→



Stick Breaking Mixture Model

α V, n, µ′

vj µj ,Λj

j ∈ N

zi xi

i ∈ D

vj ∼ beta(1, α)
Λj ∼ W(V, n) (W = Wishart distribution)

µj ∼ N (µ′, (nΛ)−1) (N = Gaussian distribution.)

P (zi = n) = (1− vn)
∏n−1
k=0 vk

xi ∼ N (µzi ,Λ
−1
zi )

• We have replaced G with something we
can almost compute.

• You cap the number of sticks to make it
computable.

• Using an indicator vector for z this can
be implemented using the mean field
variational approach.



Chinese Restaurant Process

• Closely related to the Blackwell-MacQueen urn scheme.

• It integrates out G:
If xi ∼ G, G ∼ DP (α,G0) then it calculates
P (xi|x1, . . . , xi−1, α,G0).

• Draws from it are exchangeable - the order of the xi is
irrelevant.



Chinese Restaurant Process

α
α

• Customer enters the restaurant, has to choose
where to sit.



Chinese Restaurant Process

• An infinite number of tables are actually available,
but as empty tables are equivalent the choice is
meaningless.

• When sitting at an empty table a draw from the
base measure (menu) is made - all customers at
that table are then associated with that draw.



Chinese Restaurant Process

α
α+1

1
α+1

• Tables are weighted by the number of customers
sitting at them.



Chinese Restaurant Process

α
α+2

1
α+2

1
α+2



Chinese Restaurant Process

α
α+3

2
α+3

1
α+3

• Two people have sat at one of the tables - the
same value has been drawn from the distribution
twice.

• Consequentially, a continuous base distribution has
been converted into a discrete distribution.



Chinese Restaurant Process

α
α+4

3
α+4

1
α+4



Chinese Restaurant Process

α
α+5

3
α+5

2
α+5

• The rich get richer - a table with lots of customers
will attract more customers.



Chinese Restaurant Process
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Chinese Restaurant Process

α
α+7

1
α+7

4
α+7

2
α+7

• The expected number of tables given α and n
customers is:

n−1∑
i=0

α

α+ i
= α(Ψ(α+ n)−Ψ(α)) ' α log(1 +

n

α
)



Chinese Restaurant Process

α
α+8

2
α+8

4
α+8

2
α+8



Chinese Restaurant Process

α
α+

∑n
i=1mi

m3
α+

∑n
i=1mi

m2
α+

∑n
i=1mi

m1
α+

∑n
i=1mi

• mi - The number of customers at table i.

• Whilst only four tables are shown the process goes
on forever, leading to an infinite number of
occupied tables, given infinite customers.



Chinese Restaurant Mixture Model

V, n, µ′

α µt,Λt

t ∈ T

zi xi

i ∈ D

Λt ∼ W(V, n) (W = Wishart distribution)

µt ∼ N (µ′, (nΛ)−1) (N = Gaussian distribution.)

P (zi = t) =

{
mt

α+
∑
i∈T mi

t ∈ T
α

α+
∑
i∈T mi

t 6∈ T
mt = |{i; zi = t}|
xi ∼ N (µzi ,Λ

−1
zi )

• T is the set of ’tables’ that have samples
’sitting’ at them - a finite set.

• Consequentially, this is a finite structure,
that can be Gibbs sampled without
approximation.

• All three of the following applications use
this, or variants of this.
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Background Subtraction

• Finds the interesting regions of a video.

• ’Blue screening without a blue screen’.

• Below by row: Input, ground truth, presented.

moved
object

time
of day

light
switch

waving
trees camouflage bootstrap

foreground
aperture



Method

• Construct a per-pixel model of the background. . .
. . . using a Dirichlet process Gaussian mixture model.

• Use Bayes rule to convert this density estimate to a class
membership probability (foreground or background).

• Construct a Markov random field and regularise, solving with
belief propagation (GPU friendly.).



Gibbs Sampling

V, n, µ′

α µt,Λt

t ∈ T

zi xi

i ∈ D

• Gibbs sample the Chinese restaurant
model, weighting new values by their
probability of coming from the existing
model.

• Integrate out µt and Λt - conjugate
prior means we can use the student-t
distribution and update incrementally.

• Sample the zi using P (zi = t) ∝{
mt

α+
∑
i∈T mi

P (x|Vt, nt, µt) t ∈ T
α

α+
∑
i∈T mi

P (x|V, n, µ′) t 6∈ T

• We have a never ending stream of data points - we sample
each point only once, and immediately throw it away.



Forgetting

• As time passes the background can change - the model needs
to forget the old background.

• This is achieved by capping the confidence and scaling such
values back when they pass a threshold.

• This causes older sample to be repeatedly scaled to
irrelevance as time passes, but only if the mode has changed.



Regularisation

• Standard Markov random field over image.

• We have P (data|background), we need P (background|data) -
assume that P (data|foreground) is the uniform distribution
and apply Bayes rule.

• An edge preserving cost is used between pixels, with a Cauchy
distribution-like cost that depends on colour difference.

• Solved with belief propagation - graph cuts is optimal, but
does not run as well on a GPU.



Further Details

• Background subtraction is an old area - it takes a certain
amount of engineering to be competitive . . .

• Compensate for lighting change, using a mean shift based
estimate.

• Custom colour model to reduce the effect of shadows.

• GPU implementation for speed.



Quantitative Results

• Big charts of numbers can be found in paper. . .

• . . . executive summary:
SABS (synthetic): 27% improvement.
Wallflower: 33% less mistakes.
Star: 4% improvement.

(Compared to nearest competitor in each case.)



Output - Wallflower

moved
object

time
of day

light
switch

waving
trees camouflage bootstrap

foreground
aperture

(First row = input; second row = ground truth; third row = output)



Output - Star

cam ft ws mr lb sc ap br ss

(First row = input; second row = ground truth; third row = output)



Conclusions

• The Dirichlet process allows for a really good density estimate
- it models multi-modal distributions and learns the amount of
noise.

• Consequentially, it does really well at dynamic backgrounds
that stump other algorithms. Its also great with camouflage.

• The method of forgetting learns model changes quickly, but
keeps the old model around for a long time, to be reused if
needed (Exponential falloff).
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Topic Models

• Take a document and ignore the order of the words, to get a
bag of words.

• Model a corpus of documents as draws from mixtures of
distributions over words.

• The mixing ratio is document specific, whilst the distributions
are shared - its a generalisation of a density estimate.

• The distributions are referred to as topics - they often match
up with human perception, e.g. news articles will have topics
such as sport, politics etc.



Abnormal Behaviour Detection

• Topic modelling can be generalised - for video discrete
features are extracted as words and short clips used as
documents. The topics then represent behaviours.

• This has motivated the construction of topic models with
abnormal behaviour detection in mind, of which delta-dual
hierarchical Dirichlet processes (dDHDP) is one example.

• A low model probability for a video clip indicates a previously
unseen behaviour.



Hierarchical Dirichlet Processes

H

γ G0

α Gd

hd,n

wd,n

n ∈ Nd
d ∈ D

• Created by Yee Whye Teh et al.

• Generalisation of latent Dirichlet
allocation (LDA) that learns the correct
number of topics.

• Note that it uses one Dirichlet process as
the base measure for another.



Dual Hierarchical Dirichlet Processes

• Created by Xiaogang Wang et al.

• Clusters documents, so each document is grouped with
documents that have a similar distribution over topics.

• This allows normal topics that appear in an unusual
configuration with other normal topics to look abnormal, e.g.
a person crossing the road is normal, but not whilst cars are
driving through the crossing.



Delta topic models

• Topic models are traditionally unsupervised, but for abnormal
behaviour we want supervision.

• Because tagging which visual features constitute a topic is
tedious this needs to be a form of semi-supervision.

• Delta topic models, a concept introduced by Andrzejewski et
al., achieves this goal.

• You mark which documents have or do not have particular
topics, but not which words were drawn from said topic.

• Delta-dual hierarchical Dirichlet processes combines this idea
with DHDP.



Graphical Model

d∈D
n∈Nd

wdn

tdn∈N∪A
Htdn

GDd α

Sd Fd ξ

cd∈C
McdGCcd

Qµ

c∈C
McGCcρ

ϕG0γ

t∈At∈R
HAtHRt

β



Solving

• Gibbs sample it.

• There are a lot of random variables. . .

• . . . and iterating how to sample each of them would be time
consuming and boring - read the paper (And then the papers
it references.).

• Have to use techniques such as (a modified version of) the
left to right algorithm.

• Note that Fd is known during training, but unknown during
testing.



Demonstration

a)

b)

c) d)

e)

f) g)

5X5 grid of words, visualised as
pixels in an image, with 10 top-
ics - 5 vertical and 5 horizontal
lines. Only one orientation is in
each document.

a-d is dDHDP, e-g is dLDA.

Both find abnormal topics (c &
f), only dDHDP finds normal top-
ics in abnormal context (d & g).

2 4 6 8 10 12 14 16
70

80
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100

dDHDP
dLDA

2 4 6 8 10 12 14 16
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20

40

60

80

100

dDHDP
dLDA



Mile End - Problem

• Mile end data set - 50 minutes of video of a traffic junction
near QMUL.

• Two kinds of abnormality are used for supervised training - a
u-turn (above, left) and driving from the middle area to the
right whilst traffic continues to travel vertically (above, right).

• Many other abnormalities exist.



Mile End - Results

dDHDP = 83.7%

364 13 37 87.9%

4 6 1 54.5%

22 3 45 64.3%

dLDA = 74.2%

351 22 41 84.8%

0 11 0 100.0%

56 8 6 8.6%
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dDHDP
dLDA

• Trained on 8 minutes of video, tested on 42 minutes.

• Supervision used 2 examples of each behaviour.

• Confusion matrices - supervised detection only.

• ROC curve - supervised and unsupervised detection combined.



Conclusions

• The approach captures a class of behaviours that previous
approaches could not. . .

• . . . but it does so at the expense of a very complex model.

• It takes a long time to train the model. . .

• . . . though can run in real time when analysing new
documents.
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Active Learning

• Training a classifier consists of collecting data, then
labelling the data and, finally, fitting a model.

• Data collection can often be automated, and model fitting is
a problem of computation... labelling however typically
requires human interaction, and is hence expensive.

• Active learning endeavours to minimise this expense. It orders
the training exemplars to get as much performance as possible
with the least effort.

• When to stop training is usually left to the user.



Discovery & Classification

• Discovery is when not all classes are known, and need to be
found.

• Classification is where the classes are considered to be known
but the boundaries between them need to be refined.

• Active learning is typically used to solve one of these problems
at a time.

• Here we present an approach that tackles both problems
simultaneously, with the express purpose of maximising
classification performance.



Scenario

• We have a pool of items with which to train a classifier.

• The task of the active learner is to, given the current
classifier, select the best item to be labelled by the oracle.

• After each item has had a label supplied the classifier is
updated with the new information (It helps if an incremental
learning method is used.).



Assumptions

• Assumption 1: That the item with the greatest probability of
being misclassified should be selected.

• Assumption 2: That the classes have been drawn from a
Dirichlet process. This is equivalent to assuming the items
in the pool come from a Dirichlet process mixture model.

• An infinite number of classes to which entities may belong.

• Classifier is Bayesian, but this can be ignored with a
pseudo-prior.



The Algorithm

Class assignment that the classifier, which cannot consider new
classes, gives:

cc = argmax
c∈C

Pc(c|data)

Class assignment probability, including the possibility of a new
class under a Dirichlet process assumption:

Pn(c ∈ C ∪ {new}|data) ∝

{ mc∑
k∈C mk+α

Pc(data|c) if c ∈ C
α∑

k∈C mk+α
P (data) if c = new

Probability of misclassification:

P (wrong|data) = 1− Pn(cc|data)

Concentration parameter (α) needs to be estimated - use the
Gibbs sampling method from Escobar & West ’95. Entity selection
is done probabilistically, using P (wrong) as a weighting.



Demonstration

• Use Fisher iris (orchid) classification problem from 1936,
reduced to 1D via PCA.

1 query: 2 queries:

3 queries: 5 queries:

12 queries:
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Shuttle

• Standard dataset from the UCI repository - included to
compare with other algorithms.

• Seven classes; 78% of exemplars are in the largest class,
0.01% in the smallest.
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shuttle

discovery classification
random 486.2 53.5
entropy 423.5 51.8

likelihood 950.5 79.4
Pelleg 534.0

He 768.5
Vatturi 970.5

Hospedales 933.2 61.8
P (wrong) 923.4 79.8

random
entropy
likelihood
Pelleg
He
Vatturi
Hospedalles
P(wrong)



Gait

• Gait problem - recognising one of nine camera angles from a
gait energy image. Geometric progression for sample sizes.
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discovery classification
random 1170.5 78.9
entropy 1183.8 75.3

likelihood 1171.7 56.5
Hospedales 1253.1 84.8
P (wrong) 1241.9 88.4
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P(wrong)



Digits

• Digits problem: Recognising the ten handwritten digits.
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discovery classification
random 915.2 54.6
entropy 974.0 57.1

likelihood 1060.2 61.9
Hospedales 1207.4 69.5
P (wrong) 1133.6 69.7
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Interest in Finding New Classes

• Plots of the interest in finding a new class versus the number
of queries.

• Glitch in graph due to concentration (α) estimation method
requiring at least two classes.
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Conclusions

• Simple to implement, good results.

• Minimal, if any, effort required for parameter tuning.

• Basic concept with many possible
specialisations/improvements (Though surprisingly hard to
find!).



Papers

• Background Subtraction with Dirichlet Processes, ECCV 2012

• Delta-Dual Hierarchical Dirichlet Processes: A pragmatic
abnormal behaviour detector, ICCV 2011

• Active Learning using Dirichlet Processes for Rare Class
Discovery and Classification, BMVC 2011



Last Words

• Dirichlet processes are great if you have to learn the correct
number of instances of something in a fully Bayesian
framework.

• Does a very good job at density estimation.

• Pitman-Yor processes are similar, but have a power law rather
than logarithmic relationship.

• The dependent Dirichlet process allows for relationships
between otherwise independent Dirichlet processes.
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