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Notes before we continue:

• Presenting an improved version of the algorithm.

• Binaries and test data can be obtained from www.thaines.net



Shape from Shading

• Takes as input a single image and a function from surface
orientation to surface irradiance.

• The output is the shape of the object - either as surface
orientation or depth.

• Surface irradiance only constrains one degree of freedom when
surface orientation has two degrees of freedom - the problem
is ill posed.

• Information is required to resolve the ambiguity - we use the
typical smoothness assumption.

• We have no integration constraint. This would force the
surface orientation to be consistent with a depth map.



Summary

Input Ideal Output Actual Output



Lambertian Reflectance

• Governed by the equation
I = a(n̂ · l̂), where I is
irradiance, a albedo, l̂ the
direction to the light source and
n̂ is surface orientation.

• We know all except n̂, which we
want to find.

• This constrains the surface
orientation [Worthington &
Hancock, 99] at each pixel onto
a cone with axis-angle
cos−1(I/a).



Belief Propagation

• Used to calculate the marginals of a set of random variables
given the posterior probability - P(X) =

∏
i∈F Pi (ui ).

• X is a set of random variables, for example X = {p, q, r}.
• F is a set of factors, for example F = {a, b, c}.
• The ui are the cliques, ∀i ∈ F • ui ⊂ X, for example ua = {p},

ub = {p, q}, uc = {p, q, r}.
• Can be represented graphically:

a

b

c

p q

r

• Solved by passing messages in the graphical representation.
Smaller cliques are faster (|ui |).

• Graphs with loops require an iterative approach.



Markov Random Fields

• In this case we are concerned with a
pairwise Markov Random Field.

• Each pixel in the image has its surface
orientation represented by a random
variable.

• Adjacent pixels share a factor that
expresses the smoothing assumption.

• Each pixel has a factor derived from
the Lambertian reflectance equation.



Directional Statistics

• We need to represent surface orientation, x̂ = <3, |x̂| = 1.

• Belief propagation requires a probabilistic representation.

• Traditional statistics won’t work as angles wrap around
(360◦ = 0◦) - we need to use Directional Statistics.

• Need a distribution that satisfies two properties:
• Multiplication: We need to multiply the distribution to get the

same distribution, otherwise belief propagation would not be
tractable.

• Cone: We need a distribution which can represent the cone
constraint, as obtained from the Lambertian reflectance
equation.



The Fisher-Bingham [FB8] Distribution

• The Fisher distribution is ∝ exp(uT x̂), |u| = k.

• The Bingham distribution is ∝ exp(x̂TAx̂). (AT = A)

• FB8 is the multiplication of the Fisher distribution and the
Bingham distribution, and is ∝ exp(uT x̂ + x̂TAx̂).

• It satisfies the required properties:
• Multiplication: If represented by Ω[u,A] then Ω[u,A]Ω[v,B] =

Ω[u + v,A + B], another FB8 distribution.
• Cone: The Bingham-Mardia distribution, a sub-distribution of

the FB8 distribution, may represent the lambertian reflectance
information. Given by Ω[2k cos(θ)û,−kûûT ] its maxima form
a small circle defined by a cone with axis-angle θ.



Visualisation I

Fisher distribution, k = 2. Bingham distribution, α = β = 5.



Visualisation II

Bingham-Mardia distribution,

k = 8, angle = 45◦.

Fisher-Bingham distribution,

k = 12, α = β = 9.0.



Putting it all together

x̂p

x̂q
Smoothing factor,
Ppq(x̂p, x̂q) ∝ exp(k(x̂T

p x̂q))
Prior on pixel orientation.
Uses lambertian reflectance
information, Ω[2k(Iq/a)̂l,−k l̂̂lT ]

Random variable - surface
orientation of a pixel.
A FB8 distribution.

Solved by passing messages
along graph edges. Messages
are FB8 distributions.
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The Problem with FB8 Belief Propagation

• We implement the smoothing assumption as a joint
probability distribution, Ppq(x̂p, x̂q) ∝ exp(k(x̂T

p x̂q))

• Using the message passing equations for belief propagation
this gives a message from p to q of

∫
S2 exp(k(x̂T

p x̂q))t(x̂p)δx̂p

where t(x̂p) is a FB8 distribution.

• This is recognisable as the convolution of a FB8 distribution
by a Fisher distribution, the solution of which is not a FB8

distribution.

• But the messages need to be FB8 distributions - an
approximation has to be made.



Convolution

• Convolution of the FB8 distribution is approximated with
three steps:

1 The FB8 distribution is converted to a mixture of Fisher
distributions.

2 Each Fisher distribution is convolved.
3 The FB8 distribution is fitted to the resulting mixture of Fisher

distributions.

• The solution to the second step comes from [Mardia & Jupp,
00], where a 2D approximation is given. Extension to 3D is
simple.



Convolution Justification

• The approximation error of the convolution procedure is large.

• However, the FB8 to mixture conversion is such that all six
critical points keep their directions and probability ratios, i.e.
the error at the minimas, maximas and other critical points is
effectively zero.

• The novel approximation used approximates exp(x) with
I0(
√

x), the modified Bessel function of the first kind, order
zero. These are both exponentially shaped functions,
parametrised so they match at the critical points. Therefore
the accuracy is highest at the critical points, with error
increasing as you move away from them.

• As we are ultimately interested in critical points alone the
approximation does not prove to be a problem.



Visualisation of Conversion



Visualisation of Full Approximation

Input. Convolved,

brute force.

Convolved,

approximation.

• Convolved by a Fisher distribution with k = 12.



Final Details

• Given the ability to pass messages the remainder of the
algorithm is typical belief propagation.

• The concentration value of the smoothing term can be set
constant over the entire image or modulated depending on
how likely adjacent pixels are to be the same orientation.

• The prior information for each pixel is derived from the
Lambertian lighting information, gradient information and a
boundary constraint.



Post Processing

• Running belief propagation to convergence gives us a set of
probability distributions - we want actual directions.

• Finding the most likely directions of a FB8 distribution is
done by solving the related closest/furthest point on an
ellipsoid problem.

• Each distribution has two maxima. Due to the
Concave-Convex ambiguity selecting between them with local
information will not produce a consistent global solution.

• Min-sum belief propagation is used to make the choice.



Results: Mozart at 90◦

Mozart, lit head on. Ground truth

[Worthington & Hancock, 99] [Lee & Kuo, 94] Presented algorithm



Results: Mozart at 45◦

Mozart, lit at 45◦

from head on.
Ground truth

[Worthington & Hancock, 99] [Lee & Kuo, 94] Presented algorithm



Quantitative Results: Synthetic

Mozart 90◦ < 1◦ < 2◦ < 3◦ < 4◦ < 5◦ < 10◦< 15◦< 20◦< 25◦

Lee & Kuo 0.1 0.5 1.3 2.3 3.8 17.4 36.2 52.3 66.4

Worthington & Hancock 3.3 7.3 11.3 15.3 19.6 34.9 47.5 57.0 64.3

Presented Algorithm 0.4 1.4 3.3 6.2 10.1 30.7 48.9 65.5 75.5

Mozart 45◦ < 1◦ < 2◦ < 3◦ < 4◦ < 5◦ < 10◦< 15◦< 20◦< 25◦

Lee & Kuo 0.2 0.7 1.5 2.5 3.8 16.1 35.0 54.7 67.2

Worthington & Hancock 1.3 3.2 4.8 6.3 8.0 15.3 23.0 30.7 37.7

Presented Algorithm 0.2 0.5 1.0 1.5 2.0 5.7 10.0 14.7 19.9



Results: Head

Head, lit head on. Ground truth

[Worthington & Hancock, 99] [Lee & Kuo, 94] Presented algorithm



Results: Venus

Venus, lit head on. Ground truth

[Worthington & Hancock, 99] [Lee & Kuo, 94] Presented algorithm



Quantitative Results: Real I

Head < 1◦ < 2◦ < 3◦ < 4◦ < 5◦ < 10◦< 15◦< 20◦< 25◦

Lee & Kuo 0.3 1.1 2.3 3.8 5.7 18.8 34.1 47.1 58.8

Worthington & Hancock 0.1 0.7 1.4 2.6 4.0 13.6 25.3 38.6 51.7

Presented Algorithm 0.5 1.9 4.2 7.3 11.1 33.8 49.8 62.2 72.2

Venus < 1◦ < 2◦ < 3◦ < 4◦ < 5◦ < 10◦< 15◦< 20◦< 25◦

Lee & Kuo 0.0 0.4 0.8 1.5 2.4 10.6 23.6 36.1 48.4

Worthington & Hancock 0.1 0.5 1.1 1.8 2.7 9.2 16.8 24.4 32.9

Presented Algorithm 0.1 0.5 1.1 2.1 3.4 14.5 28.9 42.1 53.1



Results: Bard

Bard, lit head on. Ground truth

[Worthington & Hancock, 99] [Lee & Kuo, 94] Presented algorithm



Results: Sunev

Sunev, lit head on. Ground truth

[Worthington & Hancock, 99] Presented algorithm



Quantitative Results: Real II

Bard < 1◦ < 2◦ < 3◦ < 4◦ < 5◦ < 10◦< 15◦< 20◦< 25◦

Lee & Kuo 0.0 0.3 0.6 1.2 1.9 8.1 19.4 27.5 33.9

Worthington & Hancock 0.1 0.5 1.1 1.9 2.9 9.0 15.2 22.3 30.1

Presented Algorithm 0.0 0.5 1.1 2.0 2.9 10.7 18.2 25.3 32.2

Sunev < 1◦ < 2◦ < 3◦ < 4◦ < 5◦ < 10◦< 15◦< 20◦< 25◦

Lee & Kuo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7

Worthington & Hancock 0.1 0.4 0.8 1.5 2.2 7.7 15.2 23.7 32.0

Presented Algorithm 0.2 0.6 1.3 2.2 3.4 13.5 27.7 41.8 54.2



Time & Space

• Time:
• Lee & Kuo takes 20 hours.
• Worthington & Hancock takes 1 hour, 50 minutes.
• The presented algorithm takes 3 minutes and 14 seconds.

• The above should be taken with caution as Lee & Kuo and
Worthington & Hancock both require an iteration count be
set. These have been set higher than necessary to obtain a
good rather then fast result.

• Space:
• Lee & Kuo stores depth in a hierarchy - 1 1/3 floats per pixel.
• Worthington & Hancock stores surface orientation - 3 floats

per pixel.
• The presented algorithm however has to store four messages

for each pixel, each consisting of a FB8 distribution at 12
floats, - 48 floats per pixel.



Conclusions

• A robust shape from shading algorithm has been presented.

• Results show it to be better than the presented competition
for real input shot with the light source at the camera.

• The lack of an integration constraint is its biggest weakness...

• ...especially as it leads to poor handling of angled light
sources due to the use of gradient information.

• The probabilistic nature of the algorithm allows tight
integration with other sources of information.



Questions?

• Remember: Test data available at www.thaines.net
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