
Vision, Modeling, and Visualization (2016), pp. 1–11
M. Hullin, M. Stamminger, and T. Weinkauf (Eds.)

Swipe Mosaics from Video
Appendix

Paper 1029

1. Baseline Algorithms

In this document we provide further results of comparisons be-
tween our system and Wu et al.’s VisualSFM [Wu07, WACS11],
Viewfinder Alignment (VfA) of Adams et al. [AGP08], a “micro-
SfM” method which computes a 2D translation using SIFT match-
ing with RANSAC, and direct (all-pixel) methods as summarized
by Szeliski [Sze06]. For each baseline algorithm we have the ca-
pability to load the output into our viewer for qualitative compar-
ison. To load VisualSfM’s output of 6d.o.f. camera positions into
the Swipe Mosaic viewer we project each camera to a location
and orientation on the 2D plane. We do this by computing a nor-
mal vector from the average “forward” direction over all cameras,
then projecting each camera perpendicularly onto a plane defined
by this normal. The location on this plane gives a 2D coordinate
to be loaded into the viewer (see main paper). The inputs used are
displayed Fig. 1.

1.1. Direct Methods

An excellent summary of techniques for Image Alignment and
Stitching was presented by Szeliski [Sze06]. Chapter 3, “Direct
(pixel-based) alignment”, details a number of methods to compute
a 2D alignment between image pairs. The general approach is to de-
fine some error metric which can evaluate how well each potential
2D alignment matches the contents of each image. Given the error
metric, one can exhaustively evaluate all possible alignments, or
use a coarse to fine method to limit the amount of computation, and
the alignment which produces the lowest error is chosen. Various
error metrics can be defined on overlapping pixels, such as Sum of
Square Differences or Sum of Absolute Differences. We compare to
the popular method of Normalized Cross Correlation (NCC), which
we also used as the basis of our feature vector computation. NCC is
an improvement over improves over Cross Correlation (which has
a tendency to give incorrect offsets in the presence of large high
intensity areas) by normalizing the overall intensity of each of the
regions being compared. However, as noted by Szeliski, “[NCC’s]
performance degrades for noisy low-contrast regions” so the im-
proved technique is not immune to problems.

Two temporally adjacent frames (Fig. 2a and Fig. 2b) from the
PRISM sequence were selected. Some scene geometry is visible on
the left of the image, but most of the pixels have been overloaded
by the bright light and are reporting close to perfect white. Never-
theless, it is clear that horizontal camera motion has taken place,

given the parts of the geometry which we can see. The NCC im-
age computed in MATLAB is shown in Fig. 2c. Two closeups of
the region around the peak are shown in Fig. 2d and Fig. 2e. Note
that the right hand peak in Fig. 2d has a higher NCC value, but the
location (768,432) implies that zero translation is the optimal im-
age alignment. The left hand peak in Fig. 2e has a slightly lower
magnitude, but the offset (679,432) indicates a horizontal offset
of (768−679)/2 = 39. Indeed, a translational shift of (39,0) does
bring the two images into good alignment. Our RRF based sys-
tem produced an estimate with mean (0.0169,0.0004) and variance
(0.00132,0.00168) for these images (note these results are not in
units of pixels as above, so cannot be directly compared), show-
ing primarily horizontal motion with roughly isotropic variance, as
we would expect from the fact that the visible texture in the image
confirms no vertical motion has taken place. Any algorithm which
simply computes NCC over entire images, finds the single peak
and uses the value will be prone to fail in image pairs such as this,
whereas our system produces a translation in the correct direction.
Note that un-normalized Cross Correlation for this image actually
produced a purely vertical translation, reinforcing the idea that un-
normalized cross correlation is unsuitable for large high intensity
regions, performing even worse than NCC.

Our method returns a distribution over possible camera motion,
which is a great advantage in cases of ambiguity such as repeated
structure. Fig. 3 shows how in the presence of multiple poten-
tial alignments. Another example of how our method is superior
to NCC is in shown in Fig. 3. When repeated structure creates a
number of possible alignments, our method (Fig. 3d) returns an
anisotropic estimate compared to the deterministic estimate pro-
vided by NCC (Fig. 3c). Corresponding repeated structure is shown
in the NCC response image; the peak happens to be located in a
ridge which indicates slight upward motion (as well as rightwards).
The vertically adjacent ridges have similar NCC values and (given
the magnitude of the camera motion between the images) are surely
almost as likely. However the single transformation returned by
pure NCC alignment will not represent this information at all. The
result from our method is more desirable in this situation.

1.2. Structure from Motion: VisualSfM

VisualSfM [Wu07, WACS11] is a state of the art SfM system,
which can process images either as “ordered” (temporally sequen-
tial frames) or “unordered”. It produces excellent results in general,

submitted to Vision, Modeling, and Visualization (2016)



2 Paper 1029 / Swipe Mosaics from VideoAppendix

(a) SKATER (b) GRATING (c) FLOWERS (d) SCULPTURE (e) LEAVES

(f) OBELISK (g) HANDBAG (h) VINYL (i) DINO (j) PRISM

Figure 1: Screenshots of various sequences loaded in the Swipe Mosaic viewer

but struggles when few or misleading feature matches are present.
We selected the SCULPTURE (Fig. 4a) and LEAVES (Fig. 4b) sequences
as likely to cause SfM failure. SCULPTURE includes specularities,
motion blur, and has few suitable corners for interest point detec-
tion. LEAVES contains lots of geometry suitable for interest point
detection, but most of these areas are on leaves, which are being
blown around in the wind, meaning points detected on them may
adversely contribute to the optimization.

VisualSfM was run on each sequence in both ordered and un-
ordered mode. This mode affects which image pairs are compared
to find interest points; either all pairs (unordered) or only tempo-
rally adjacent pairs (ordered).

Running unordered on SCULPTURE, 38 camera locations were re-
constructed from the 101 input images, leading to an incomplete
Swipe Mosaic. Running ordered mode yields an even worse re-
sult, reconstructing 35 camera locations but in three independent
groups. The locations that VisualSfM did produce were accurate,
but the full camera path produced by our system is preferable, as
shown in Fig. 5.

The LEAVES dataset consist of 201 images. VisualSfM in ordered
mode computed locations for only 70 of the images, albeit produc-
ing a reasonable Swipe Mosaic. Running SfM in unordered mode
computes a location for all of the images, but the placement under-
goes a catastrophic failure, with the resulting Swipe Mosaic suffer-
ing severe artifacts. The failure takes the form of one side of the
horizontal path being relatively correct, and the image locations
gradually worsening as we travel along the video timeline, until the
predicted image locations do not even overlap (see supplemental
video). For both the sequences in this section, our system produced
easily navigable locations for all cameras (see video and Fig. 4). We
surmise that unordered mode producing better results in this case
was due to a greater variety of image pairs being run through SIFT
matching, rather than merely a few temporal neighbors. If a several
consecutive frames of video are blurred or contain confusing mo-
tion, unordered mode will still be able to search for SIFT matches
between frames “either side” of the problem area, thus providing a
more robust solution.

1.3. µSfM

“micro-SfM” or “µSfM” is a system which we have developed with
the intention of it being an equivalent system to SfM, but with-
out computing any structure, and with camera transforms limited
to 2D translation. The thinking behind this is that computing a 6D
quantity for each frame is an inherently harder task than comput-
ing a 2D quantity for each frame, and so simply comparing our 2D
RRF method to VisualSfM was not a fair comparison. Rather, we
should apply the technique from VisualSfM to the strictly easier
problem of computing translations (not fundamental matrices) in
order to compare like-for-like results. “µSfM” matches two images
by generating SIFT descriptors and performing matching using the
standard algorithm of Lowe [Low04]. A translation is computed us-
ing RANSAC to iteratively select a random SIFT match, compute
the corresponding 2D transform and count the number of inliers.
The transform with the highest inlier count is used to generate a
final refined transform from the entire inlier set. To combine mul-
tiple translation estimates across an image sequence, we use the
least-squares based layout algorithm developed for our RRF esti-
mates. As the layout algorithm allows for a weighting to be applied
to each relative transform (in our main system we use the inverse
variance from the forest) we test two versions of µSfM – one un-
weighted, and one weighted using the ratio of inliers to total num-
ber of matches found when generating the transform. This should
ensure that translations for which every single SIFT match agrees
are given more weight by the optimization.

Considering the simplicity of the method, µSfM is surprisingly
capable. In particularly, it can produce just as good a camera path
for the LEAVES sequence as our technique. However as the method
relies entirely on interest point matching, we know it is susceptible
to fail in the presence textureless regions, motion blur or repeated
structure. The VINYL sequence contains a blurry obstruction which
is very close to the camera, separating to regions containing strong
texture information. The camera travels horizontally, starting in one
textured region, passing the obstruction (which takes up the whole
screen for a few frames) and ends viewing the second textured re-
gion. Surprisingly, inside the (apparently) textureless region, SIFT
is able to detect a few interest points. Matching these interest points
prooves difficult however; most of them have extremely similar ap-
pearances, and despite implementing Lowe’s technique for avoid-

submitted to Vision, Modeling, and Visualization (2016)



Paper 1029 / Swipe Mosaics from VideoAppendix 3

(a) PRISM frame 165 (b) PRISM frame 166

200 400 600 800 1000 1200 1400

100

200

300

400

500

600

700

800
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) NCC result from MATLAB NORMXCORR2 be-
tween images

X: 768 Y: 432
Index: 0.8645
RGB: 0.5, 0, 0

600 650 700 750 800

380

390

400

410

420

430

440

450

460

470 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(d) Primary peak (greatest NCC value)

X: 679 Y: 432
Index: 0.8569
RGB: 0.5, 0, 0

600 650 700 750 800

380

390

400

410

420

430

440

450

460

470 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(e) Secondary peak (lower NCC value)

Figure 2: NCC failing to compute the correct offset for two frames in PRISM. Black borders added to top images for clarity.

submitted to Vision, Modeling, and Visualization (2016)



4 Paper 1029 / Swipe Mosaics from VideoAppendix

(a) Image A (b) Image B

X: 902 Y: 405
Index: 0.7324
RGB: 0.5, 0, 0

750 800 850 900 950 1000 1050

320

340

360

380

400

420

440

460

(c) Detail of NCC response with peak
and zero location marked.

0.050.00 0.05 0.10 0.15 0.20

0.15

0.10

0.05

0.00

0.05

(d) Distribution returned by our
method.

Figure 3: NCC computes a large diagonal offset for 2 frames containing repeated structure. The white line in c) connects the NCC peak with
the location which would represent zero offset

(a) SCULPTURE (b) LEAVES

Figure 4: Screenshots in the Swipe Mosaic interface of the datasets on
which we compare our performance to SfM. The minimap in the bottom
right shows the camera locations.

x

y

x

y

Figure 5: 2D camera coordinates (unitless) for SCULPTURE produced by our
system (left) and VisualSFM (right). Blue points indicate images where
both systems gave an estimate of location (note the estimates differ); red
points are images where only our system produced an estimate. Note the
obvious outlier at the top of the SfM result.

x

y

a)

c)

b)

Figure 6: Regularized locations for the VINYL scene, for the images which
straddle the obstruction. Dots represent image locations and the line joins
them in temporal order. Larger dots show the start and end of this subse-
quence. As the correct camera motion is approximately a constant horizon-
tal velocity, the ideal result would be equally spaced dots on a horizontal
line. Scale between the 3 diagrams is not meaningful. a): µSfM result with
unweighted regularization. b): µSfM with weighted regularization. c): our
system.

ing ambiguous matches, the translations returned from the middle
frames in this sequence were extremely noisy. Note the results in
Fig. 6, bearing in mind the ideal answer would be almost pure
horizontal motion. Both µSfM results display problems with some
frames ending up at a large displacement to the lower right corner
of the map, with the subsequent frames on the normal timeline. It
can be seen that the weighted version displays a smoother timeline
at the beginning and end of the sequence, but for both a) and b) the
mistakes in the middle of the sequence make this difficult to nav-
igate in our interface (frames displaying the obstruction are incor-
rectly displayed amongst the frames of texture objects). By contrast
our result, c), whilst by no means perfect, is a vast improvement
on both µSfM results. For the images where texture is available it
computes a consistent horizontal motion. For the frames contain-
ing no texture, there is insufficient information to state which (if

submitted to Vision, Modeling, and Visualization (2016)



Paper 1029 / Swipe Mosaics from VideoAppendix 5

0

10

20

3040

50

60

70

80

90

100

110

(a) ESM

0

10
20

3040

50
60

70
80

90100110

(b) Ours

Figure 7: 2D camera coordinates produced for OBELISK using ESM (Fig. 7a)
and our method (Fig. 7b). The true camera motion is approximately constant
horizontal translation, coupled with rotation to remain pointed towards the
object of interest (see supplemental video).

any) direction the camera has moved, so our system returns a num-
ber of zero mean, wide variance offsets. The optimization places
these roughly on top of each other, generating the point cluster in
the result. Obviously this is not actually correct, as the camera was
always moving, but as there is no way to tell this simply from the
images pairs we produce a reasonable result, which allows the se-
quence to be browsed as a Swipe Mosaic without artifacts. It may
be possible to improve this aspect of the system by using a camera
motion model in the layout algorithm, meaning that when we knew
the first few frames had the camera move to the right, then when
presented with insufficient visual information our estimate would
be some kind of rightwards motion, rather than zero mean motion.
Another failure case for µSfM was PRISM, where the camera auto-
gain causes whiteout for a few frames. Similarly to the previous
sequence, no reliable feature matches could be detected during this
central part of the image sequence, leading to incorrect matches in
the middle of the sequence again.

1.4. Efficient Second-order Minimization

Efficient Second-order Minimization (ESM) [BM04] is a direct
method which explicitly models the scene as a plane, and searches
for a parameterized transform which minimizes the sum of squared
differences between two images. The transform can be parameter-
ized as anything from a full homography (8DoF) to a translational
transform (2DoF), and the parameters are solved for using an ef-
ficient method which achieves Newton method like convergence
rates, without having to compute the Hessian. We used the imple-
mentation of ESM available in Ed Rosten’s LibCVD project, using
2 DoF to produce a translation between each image pair, before
using our layout algorithm. ESM produces a good Swipe Mosaic
result for some of our test sequences, but the explicit parameteri-
zation of the scene as a plane leads to problems when faced with
non-planar camera paths or distorting objects. ESM performed very
badly on the OBELISK scene, laying out frames which should be very
far from each other in roughly the same place. Our system produced

an intuitively navigable Swipe Mosaic. The camera paths produced
by ESM and our method are shown in Fig. 7. Note the broadly hor-
izontal linear path produced by our method in contrast to the ESM
path which continually crosses itself. This is due to our method’s
more gradual degradation as scenes deviate from planar, allowing
us to cope with strong perspective deformations. See the supple-
mental video for a comparison of the browsing experience of these
two solutions.

1.5. Viewfinder Alignment

Our final baseline comparison is to Viewfinder Alignment (VfA)
of Adams et al. [AGP08]. VfA is a method to compute constrained
transforms between temporally close video frames. VfA computes
a “digest” for each frame by encoding edge information at 4 equally
spaced orientations using gradient integral projection arrays, as
well as detecting the top k peaks in the image. Two image digests
are aligned by first calculating a single 2D shift which best aligns
the edge information stored for each image. This 2D shift is applied
to the detected corners of one of the digests. The number of inliers
(a pair of points, one from each image, landing within 3 pixels from
each other) between the two points sets is counted and taken as the
confidence that the images have been aligned correctly. The set of
inliers is used to generate a similarity transform, giving 4 degrees of
freedom (translation, rotation and scale) between pairs of frames.
Note that our VfA test scenes were chosen intentionally so that the
rotation and scale change was negligible so these parameters are
ignored, i.e. we are only interested in the relative accuracy of the
translations computed by different methods. Experiments showed
that when compute the scale change was typically between 0.98
and 1.02, and the rotation on the order of 0.1 radians, justifying
this decision.

VfA has a number of attractive properties, including computa-
tional efficiency and being extremely resistant to noise. A disad-
vantage of the algorithm is that it is completely deterministic, in
that only one 2D translation between each frame pair is consid-
ered, when the digest edge information could be used to produce
a distribution of translations. Additionally, the corners returned
from the corner detector are simply stored as 2D locations, without
any kind of descriptor, allowing corners which represent different
scenes points to potentially be aligned with each other and treated
as an inlier. We compared our system to our own re-implementation
of VfA. This code is supplied as supplemental material. We now
present detailed analysis of VfA on various test scenes.

All the sequences in this document were run through our re-
implementation of Viewfinder Alignment. We tried to match each
digest with the digests from other images which were within 6
frames (forward or backwards). If a complete graph could be con-
structed, we used all the inferred translation values as input to our
linear least squares regularization (see main paper). Inlier matrices
are shown using the standard Jet colormap, except that pairs which
either produced zero inliers or were not compared (i.e. they were
too far apart temporally) are left blank.

submitted to Vision, Modeling, and Visualization (2016)



6 Paper 1029 / Swipe Mosaics from VideoAppendix

Figure 8: Sample Images from lobby sequence.

0 50 100 150 200 250

0

50

100

150

200

250

inliers matrix with zeros removed

4

8

12

16

20

24

28

32

Figure 9: Number of inliers from lobby sequence.

Successes

Lobby

The lobby sequence is largely featureless, but the objects that are
seen display strong vertical and horizontal edges, resulting in an
excellent output when browsed as a Swipe Mosaic.

Fence

The fence contains repeated structure with many similar looking
horizontal edges but VfA is robust to this, producing a fully con-
nected set of inliers (Fig. 11) and a correct reconstruction.

Failure cases

Vinyl

The Vinyl sequence contains an obstruction which does not trigger
Viewfinder Alignment’s corner detection (Fig. 12). This causes a
large region with zero inliers (Fig. 13) which prevents the start and
end of this sequence from connecting to each other, and therefore
renders it impossible to create a single set of camera paths to be
loaded into our viewer.

Figure 10: Sample Images from fence sequence.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

inliers matrix with zeros removed

3

6

9

12

15

18

21

24

Figure 11: Number of inliers from fence sequence.

Figure 12: Sample images from vinyl sequence.

submitted to Vision, Modeling, and Visualization (2016)



Paper 1029 / Swipe Mosaics from VideoAppendix 7

0 10 20 30 40

0

10

20

30

40

inliers matrix with zeros removed

4

8

12

16

20

24

28

32

Figure 13: Number of inliers from vinyl sequence. Note two sepa-
rate “islands”.

Figure 14: Sample images from grating sequence.

Grating

The Grating sequence is an interesting case because it contains
very easily localisable vertical edges but relatively few unambigu-
ous horizontal edges (Fig. 14). Viewfinder Alignment finds suffi-
cient transforms to regularise the 80 frame segment all together as
one connected cluster, leading a promising looking inliers graph
(Fig. 15). However, a small number of incorrect matches corrupt
the whole regularisation, resulting in final camera locations shown
in Fig. 16 and Fig. 17. The correct arrangement should be a roughly
straight vertical line. It seems likely that the lack of strong horizon-
tal edges meant that when an incorrect alignment was proposed and
approved by the corner correspondence stage of VfA. Corners are
deemed as inliers based on whether a given shift puts them on top of
each other, not based on any kind of descriptor based on the visual
appearance of whatever was originally detected as a corner.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

inliers matrix with zeros removed

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 15: Number of inliers from grating sequence.

80 60 40 20 0 20 40 60
100

80

60

40

20

0

20

0

79

unweighted

Figure 16: Regularized camera locations for grating, unweighted. 0
is the first frame; 79 the final frame.

In this situation potentially even adding corner descriptors to the
algorithm would not remedy the situation, because it seems like
most corners are liable to be detected on either the drain or the two
grooves next to it, and any hypothetical descriptor computed on
these locations is likely to be visually similar to another descriptor
computed somewhere else on the drain / groove. The best move-
ment cues in this scene are the water stains on the floor, which are
non-repeating, but these are not captured well by the VFA digest.

2. Further Swipe Mosaic Results

2.1. Synthetic Satellite footage dataset

As well as the real video sequences, we converted a timelapse video
of the Earth recorded from the International Space Station into a
Swipe Mosaic. We first constructed an intermediate video by crop-
ping out a thin horizontal strip from the bottom of each image and
splitting each strip into eight overlapping images. A virtual cam-

submitted to Vision, Modeling, and Visualization (2016)



8 Paper 1029 / Swipe Mosaics from VideoAppendix

80 60 40 20 0 20 40 60
100

80

60

40

20

0

20

0

79

weighted by inliers

Figure 17: Regularized camera locations for grating, weighted by
inlier count. 0 is the first frame; 79 the final frame.

era was moved back and forth along the strips, moving forward in
time upon reaching the end, to give these cut up frames a nomi-
nal temporal ordering. We run pairwise prediction, regularization
and translational loop closure on this sequence, and know that the
images should ideally be estimated to form a regular rectangular
grid.

It is hoped each image would know from the translational RRF
that their neighbors on the same strip were at a purely horizontal
offset, and neighbors on a different strip were at a purely verti-
cal offset. The output of the first regularization step is shown in
Fig. 19a. The arrangement is approximately what we would have
hoped for, but the locations as a whole “lean” to one side. This can
be explained by noting that for the images at either end of the strip,
when the virtual camera moves “up” or “down”, the overlapping
pixel data between the image at either end of this link will actu-
ally move diagonally, because all the earth’s surface appears to be
moving away from the focus of expansion. Because the strips were
not symmetrically cropped (the main goal of the cropping was to
remove the visible parts of the ISS which appeared in the frame, of
which there was more on one side) we see that the “up-down” links
such as (7,15) push the entire system to the left to a greater extent
than the links on the other side such as 40,48.

Ideally, our loop closure step should (with slightly modified
thresholds to account for the shorter loops present in this ar-
tificial scene versus a real scene) detect loop points between
every image and its corresponding vertical neighbors, i.e. link
(0,15),(1,14),(2,13) etc.. After incorporating a pairwise predic-
tion from each and re-regularizing, we would hope to see the same
overall grid structure, but with less of the horizontal skew visible in
Fig. 19a. The result of automatic loop closure is shown in Fig. 19b.
Loop points have been found in the majority of places we hoped
to see them. The output is not perfect but the transitions between,
for example, images 3, 12 and 19 are closer to vertical than before
the loop closure, and so are correspondingly improved in the visu-
alization. For this dataset, vertical would be the ideal answer. Even

with the imperfect results, the ISS sequence is easy to navigate as a
Swipe Mosaic.

3. Implementation Details

3.1. Training Data Acquisition

Capturing real-world video data with ground-truth camera motion
is error-prone and time consuming even with specialized equip-
ment. After a variety of attempts, including using multi-camera
rigs and improvised outdoor motion capture, we eventually chose
to generate synthetic image pairs with known camera motion. The
RRFs are able to learn how different 2D translations and rota-
tions appear when the world is shiny, smooth, bumpy, repetitive,
and when distracting objects are moving about. We did not ren-
der motion blur, but this is certainly possible. Synthesizing train-
ing data with graphics techniques has previously proved success-
ful [SFC∗11, MAHPB12], despite the obvious risk that the result-
ing regressor or classifier may only be accurate on artificial-looking
scenes. Aiming for large variations in shape and appearance, we
rendered a family of random landscapes consisting of both angular
pillars and smooth NURBS surfaces, with shape variability gener-
ated by randomly moving the pillars and deforming the surfaces.
Appearance variability was achieved by rendering each object with
a random color and reflectivity. We render two images of each land-
scape, with a random in-plane camera translation as the only dif-
ference between them. The generated images include both texture
rich and texture poor regions, and irregular curved edges between
NURBS surfaces, which are elusive to many interest-point detec-
tors.

A benefit of our supervised learning approach is that if deficien-
cies are found in the future, it is possible to augment the training
set and improve model performance. During development of our
system, it was determined that regularly repeating structures posed
difficulties for the system. We augmented the training set by adding
“billboard” datasets which replaced the random landscape previ-
ously described with a textured polygon, containing one of a set of
images of repeated structure which were obtained from Flickr and
other Creative Commons sources. Example frame pairs from our
training data are shown in Fig. 20.

3.2. Gabor Filter Bank

As mentioned in the the Feature Computation section of the main
paper, a bank of Gabor filters are used as part of the feature compu-
tation process. Each filter is computed from the product of a Gaus-
sian and a sinusoid, according to (1).

g(x,y;λ,θ,σ,γ) = exp

(
− x̂2

2σ2 −
ŷ2

2σ2
y

)
exp
(

2πx̂
λ

)
(1)

x̂ = xcosθ+ ysinθ (2)

ŷ =−x sinθ+ ycosθ (3)

σy =
σ

γ
(4)

(5)

λ represents the wavelength of the sinusoid, θ is the orientation
of the sinusoid (the orientation parameters allows the detection of

submitted to Vision, Modeling, and Visualization (2016)



Paper 1029 / Swipe Mosaics from VideoAppendix 9

Figure 18: Example images from ISS sequence, from the right hand edge of the image grid. Note how structures travel diagonally down to
the right between frames – this is due to the curvature of the earth from the ISS’ vantage point.

(a) Without loop closure.

(b) With loop closure.

Figure 19: Loop closure on ISS. For this sequence only, the loop point
detection parameter was set to 10 to allow for shorter loops. Only locations
of the initial 64 frames are shown for clarity.

Figure 20: The RRF is trained on thousands of two-frame image se-
quences, with known camera transforms. To obtain sufficient quantity and
variety of camera moves and scenes, we generated the training data using a
custom-built but simple graphics engine. The top 2 rows show a few exam-
ples of the procedurally generated scenes with depth variations and dynamic
scene elements. The bottom row contains real images from Flickr that were
mapped onto flat moving surfaces to generate training data with repeated
textures.

λ θ σ γ

100 0 4 1
10 0, π

4 , . . . ,
7
4 π 2 1

10 0, π

4 , . . . ,
7
4 π 2 0.5

10 0, π

4 , . . . ,
7
4 π 3 1

10 0, π

4 , . . . ,
7
4 π 3 0.5

Table 1: Parameters used to generate the Gabor filter bank.

multimodal ridges at different angles), σ represents the standard de-
viation of the Gaussian, and γ controls how this standard deviation
varies in the x and y directions (i.e. creating an elliptical function).
The ranges of values used for these parameters is specified in 1.
For each configuration of parameters, the filter is created as wide
(in pixels) as necessary to encompass 3 standard deviations for the
Gaussian.

3.3. Pseudo-code
procedure FEATEXTRACTIMG(Is, It )

for l ∈ {1,2,4,6,8} do
for x ∈ {0 . . . l−1} do

for y ∈ {0 . . . l−1} do
x,y← TEMPLPIX(l,x,y, It .shape)
x̂, ŷ← SEARCHPIX(l,x,y, Is.shape)
T ← It [y,x]
S← Is[ŷ, x̂]
N←NCC(S,T )
ENCODENCC(N, l,S.shape)

procedure ENCODENCC(N, l,shape)
OUTPUT(MIN(N),MAX(N),MEAN(N))
x,y← PEAKCOORDS(N)
x′,y′← NORMPEAK(x,y,shape)
OUTPUT(x′,y′)
for p ∈ 10,20 do

OUTPUT(LAPLACECOORDS(N,x,y, p))
OUTPUT(NORMEDHIST(N,(−1,1),5))
if l <= 2 then

for G ∈ G do
H← N ∗G
a,b← MIN(H),MAX(H)
c,d← MEAN(H),MEDIAN(H)

submitted to Vision, Modeling, and Visualization (2016)



10 Paper 1029 / Swipe Mosaics from VideoAppendix

OUTPUT(a,b,c,d)

Pseudocode to extract a feature vector from equal sized grayscale
images Is and It . Indentation denotes structure, as with Python.
Zero based indexing is used. I[y,x] is a slicing operation to extract
the subwindow defined by pixel index vectors x and y. TEMPLPIX

returns the pixel indices to extract a small “template” window for
a given level, window index and image size. SEARCHPIX oper-
ates similarly but produces indices for a larger “search” window.
OUTPUT appends a variable number of features to the feature vec-
tor being built for this image pair (for clarity, there is no variable
to represent the feature vector in the pseudocode). PEAKCOORDS

computes the 2D pixel shift for the peak of the NCC response.
NORMPEAK normalises this in relation to the template image size.
LAPLACECOORDS computes a Laplacian coordinate descriptor on
N around the peak point (x,y) at a scale p. NORMEDHIST returns
a 5 bin histogram of the NCC image with bin limits (−1,1).

3.4. Performance

All results were generated by a single trained translational RRF
with 10 trees and maximum depth 12. At each node, 2000 possi-
ble feature splits were considered. The one-time training took 1h
43m on a Core 2 Duo 2.8 GHz, using both CPU cores. All exper-
iments were carried out with the same synthetic training set built
from 8800 image pairs. The rotational RRF was trained with 20
trees of depth 12, considering 100 feature splits per node. Only 400
image pairs were used in the training set, as inferring pure rotation
is a strictly easier problem than translation, because what appears
in the images is not scene geometry dependent. All images were
768× 432 or 640× 480. A 2.5 GHz single core Xeon, computed
121 NCC matches and the 3599D features for two images in 15
seconds. Most useful datasets contain thousands of image pairs, so
we used a cluster to process datasets quickly.

3.5. Optical Flow

Initial versions of our feature extraction used Optical Flow (rather
than NCC) on the input images, before condensing that informa-
tion into a vector. Building the feature vector from NCC is not an
obviously better choice than using Optical Flow, but we obtained
better test-time results with NCC based features. It is likely that
the NCC responses are better correlated with motion-confidence
than flow, which has some estimated vector for every pixel. Signif-
icantly, the regressor has the benefit of learning from our graphics
engine: it has seen thousands of rendered examples of image pairs,
with knowledge of the true 2D Euclidean transform.

4. 6D to 2D Camera Projection

To compare the 6D ground truth poses with each 2D solution, three
steps had to be carried out. First, a ground truth pose must be estab-
lished for each RGB frame, as the FREIBURG2 dataset only provides
camera locations from motion capture, and the Kinect and motion
capture systems were running unsynchronised at different frequen-
cies. Secondly, some projection of each 6D camera pose onto 2D
must be established, and finally the 2D solutions must be scaled
and aligned to assess the correctness of the locations.

n̂

û1

û2

(ûT
1 c1, û

T
2 c1)

(ûT
1 c2, û

T
2 c2)

(ûT
1 c3, û

T
2 c3)

c1

c2
c3

Figure 21: Diagram showing how 3D camera positions c1,c2,c3 are pro-
jected (red dashed line) onto a 2D coordinate space defined by a plane
(blue). For the “best fit” case, the plane normal n̂ is generated by averaging
the forward vectors of all the cameras. The basis vectors û1 and û2 lie within
the plane and are mutually orthogonal. When fitting to the plane defined by
an individual camera, û1 and û2 are chosen to be parallel to the “right” and
“up” vectors of individual cameras (black dotted lines).

To establish a 6D ground truth location for each RGB frame, we
linearly interpolated between the closest two motion capture po-
sitions using the globally synched timestamps (available for both
motion capture and Kinect readings). The rotation was encoded as
a quaternion during this process, ensuring linear interpolation is
a reasonable approach. The result of this operation is a 6D cam-
era pose corresponding exactly to each RGB frame. The 6D to 2D
projection step is described below, and the final alignment step is
carried out using the Procrustes algorithm [Pri12].

Given a 3D plane represented as a unit normal n̂ and a point
on the plane p, we define two unit vectors û1 and û2 such that
ûT

1 û2 = ûT
1 n̂ = ûT

2 n̂ = 0. The exact orientation of these vectors is
not important as the subsequent alignment includes a rotation step.
Each camera location ci is projected onto a 2D location on the plane
(ûT

1 ci, ûT
2 ci) (see Fig. 21). To define the plane orientation, we tried

both a “best fit” to all the camera locations, and also tried using
the “up” and “right” vectors of each individual camera in turn. The
“best fit” plane was defined by setting n̂ to the average forward di-
rection of each camera. The maximum angular difference between
the computed normal and the forward vector of any of the cameras
is 9.46 degrees, confirming that the scene contains only minimal
rotation and is therefore a good candidate sequence for this com-
parison.

Additionally, Fig. 22 contains the comparison between our
method and NCC for the FREIBURG2 dataset.

References
[AGP08] ADAMS A., GELFAND N., PULLI K.: Viewfinder alignment.

Eurographics (2008). 1, 5

[BM04] BENHIMANE S., MALIS E.: Real-time image-based tracking of
planes using efficient second-order minimization. In Intelligent Robots
and Systems (2004), vol. 1, pp. 943–948. 5

[Low04] LOWE D. G.: Distinctive image features from scale-invariant
keypoints. IJCV (2004). 2

[MAHPB12] MAC AODHA O., HUMAYUN A., POLLEFEYS M., BROS-

submitted to Vision, Modeling, and Visualization (2016)



Paper 1029 / Swipe Mosaics from VideoAppendix 11

0 200 400 600 800 1000
index of camera used to define projection plane

19

20

21

22

23

24

M
S
E

MSE compared to ground truth for NCC and Our method
projecting ground truth onto plane defined by each individual camera

NCC
Ours

Figure 22: Comparison of Mean Squared Errors between our method and
NCC for the whole range of possible individual camera projection planes,
for FREIBURG2. Note the self similarity of the lines. As we change which
ground truth camera defines the projection plane, both solutions (being so
similar) have coinciding increases or decreases in performance.

TOW G. J.: Learning a confidence measure for optical flow. PAMI
(2012). 8

[Pri12] PRINCE S.: Computer Vision: Models Learning and Inference.
Cambridge University Press, 2012. 10

[SFC∗11] SHOTTON J., FITZGIBBON A., COOK M., SHARP T., FINOC-
CHIO M., MOORE R., KIPMAN A., BLAKE A.: Real-Time Human Pose
Recognition in Parts from a Single Depth Image. CVPR (2011). 8

[Sze06] SZELISKI R.: Image alignment and stitching: a tutorial. Found.
Trends. Comput. Graph. Vis. (2006). 1

[WACS11] WU C., AGARWAL S., CURLESS B., SEITZ S.: Multicore
bundle adjustment. CVPR (2011). 1

[Wu07] WU C.: SiftGPU: A GPU implementation of scale invariant fea-
ture transform (SIFT). cs.unc.edu/~ccwu/siftgpu, 2007. 1

submitted to Vision, Modeling, and Visualization (2016)

cs.unc.edu/~ccwu/siftgpu

