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Figure 1: Left: Input videos containing “difficult” phenomena are used as inputs to our system. Right: The Swipe Mosaic interface allowing navigation over
an image sequence. We propose Swipe Mosaics as an algorithm and associated interface which composites video frames into a content-centric navigable
visualization. Some videos can already be browsed spatially by using existing mosaicing or IBR methods. Our system broadens the range of usable videos
because it is trained to tolerate scene motion, parallax, repeated structure, and lack of texture.

Abstract
A panoramic image mosaic is an attractive visualization for viewing overlapping photos, but its images must be captured
correctly to produce an acceptable composite. We propose Swipe Mosaics, an interactive visualization that places individual
video frames on a 2D planar map that represents the layout of the physical scene. Compared to traditional panoramic mosaics,
our capture is easier because the user can both translate the camera center and film moving subjects. Processing and display
degrade gracefully if the footage lacks distinct, overlapping, non-repeating texture. Our proposed visual odometry algorithm
produces a distribution over (x,y) translations for image pairs. Inferring a distribution of possible camera motions allows
us to better cope with parallax, lack of texture, dynamic scenes, and other phenomena that hurt deterministic reconstruction
techniques. Robustness is obtained by training on synthetic scenes with known camera motions. We show that Swipe Mosaics
are easy to generate, support a wide range of difficult scenes, and are useful for documenting a scene for closer inspection.

1. Introduction
The success of Microsoft’s Photosynth [Pho12] demonstrates that
people wish to capture environments for later navigation. In the
case of a video it is intuitive to navigate spatially, rather than
in the temporal order it was captured. The works of [GGC∗08],
[KWLB08], [DRB∗08], and [NNL13] explored the direct manipu-
lation of video. They map a user’s click-drag strokes to a sequence
of frames elsewhere in the timeline (with variations). The location
of the click and the direction of the mouse indicate which pixels
and what point or optical flow trajectory to query in the sequence
as a whole. We seek a similar direct user interaction for spatial nav-
igation of scenes, which preserves the film’s points of view and the
veracity of the images. For example, imagine needing to inspect the
car in Fig. 1 to place a bid for it in an online auction, or to examine
scratches after a crash. Our system allows casually captured video
footage to be automatically converted, under some simple assump-
tions, into a navigable “Swipe Mosaic”.

Image Based Rendering (IBR) techniques can be used both to

composite static/dynamic mosaics [IAH95] and for 3D brows-
ing [SSS06,GAF∗10]. They depend on either accurate optical flow
estimation or interests points, for 2D/3D pose estimation. Both op-
tical flow and interest points require texture. However, many ev-
eryday scenes lack texture, or otherwise break the assumptions of
current IBR and direct video manipulation systems. Our proposed
IBR approach gracefully degrades for difficult scenes, maintaining
both rendering quality and user interaction. Towards the objective
of intuitively navigating video, we present the following contribu-
tions:

• A regressor trained with synthetic data, that learns the relation-
ship between image pairs and their 2D Euclidean transform.

• A layout method that uses the probabilistic pairwise predictions
from the regressor to produce a 2D location for each image, in-
cluding detecting and optimizing loop-closures.

• A Swipe Mosaic interface, shown in Fig. 1, to display the video
frames, allowing the user to perform content centric navigation
and inspection by “swiping” scene elements. The interface runs
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as either a native application or in a web browser, and can be
used on a smart phone.

In contrast to regular panoramic image mosaicing approaches, our
system can analyze and visualize hand-held camera footage with
parallax, blur, textureless areas, specular areas, and moving sub-
jects. The visualization quality degrades gracefully in the case of
especially difficult scenes.

2. Related Work
Since the genesis of Image Based Rendering (IBR) for synthetic
data [CW93], steady progress has been made toward beautiful and
useful renderings of real world footage. Footage usually comes
from multiple viewpoints, so progress is inherently dependent on
having accurate estimates of relative camera poses. Here we sum-
marize the most relevant interactive IBR approaches, starting with
techniques for estimating the needed camera parameters.

Camera Poses A comprehensive summary of methods for con-
verting video frames into planar and cylindrical mosaics is pre-
sented in [Sze96], while [SS97] cover spherical mosaics. They ex-
plain how stitching an image mosaic is easiest when all the images
can be related to each other by homographies. Such registration
benefits from either manual or interest-point based initialization,
and assumes that the scene is textured. Textured scenes ensure con-
vergence when minimizing the residual difference in the intensities
of overlapping pixels. Texture can also help when mosaicing an
image sequence, because optical flow is strongly correlated with
visual odometry [Cam04]. Approaches such as DTAM [NLD01]
estimate camera pose for textured scenes. We too benefit from tex-
ture in the scene, but are less reliant on it.

Initializing camera poses can be difficult in practice, even in tex-
tured scenes. Hardware attached to the camera can help [ATP∗10],
as demonstrated by [YN01] who fused visual cues with gyro-
scope data and [KD04] who used an inertial sensor to mitigate
blur. [KUDC07] actively controlled the camera pose using a mo-
torized telescope mount to stitch mosaics of thousands of pho-
tos. There are numerous other hybrid systems which fuse other
data with images, but even [KUDC07], [WMLS10], and the Photo-
synth App [Pho12] rely on interest point matching to register their
images. The SIFT detection and features of [Low04] remain the
standard by which interest point detection and matching is mea-
sured [TM07]. Finding enough matching interest points in an im-
age collection means that photos can be registered to each other,
adjusted for exposure, and blended into a large mosaic [BL03].
At least four points must be matched to compute the projective
transform between two images, but in practice 10’s and 100’s of
points are used with RANSAC [FB81] to robustly calculate an an-
swer. The same approach and inflated number of distinct interest
points is normal for estimating the translation and rotation of the
2D Euclidean transform, even though two corresponding points is
enough, and solutions with corresponding lines and curves also ex-
ist [HZ06]. The key issues are that large areas of real images have
light or sparse texture, and that seemingly corresponding points
may not represent the same 3D point in the world because of scene
motion, motion blur, reflection, or repeated structures [Sze06].

When building mosaics or other IBR and multi-view scene mod-
els, camera pose estimation is overwhelmingly seen as a self-
contained problem. Even [Dav98], whose system was designed to
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Figure 2: System diagram illustrating how a video is analyzed to gener-
ate a Swipe Mosaic. Blue lines indicate the offline training process. Dotted
yellow lines indicate post processing steps, which take place after an initial
layout is found.

cope with moderately-sized moving objects and rotation-only cam-
eras, performs global optimization by treating all the estimated
pairwise camera-transforms as equally good. In contrast, our re-
gressor (§3.1) reports high uncertainty for less textured or more
dynamic scenes, and the subsequent layout computation (§3.2) in-
corporates this uncertainty. Swipe Mosaic visualizations can bet-
ter cope with difficult (though typical) footage because we work
with distributions rather than committing too early to interest-point
matches or specific Euclidean transform parameters.

Probabilistic distributions on locations have been applied be-
fore, such as to help a “teleporting” robot with a range sensor lo-
calize itself in a known floorplan [TFBD01]. Probabilistic mod-
els are increasingly employed in Structure from Motion (SfM)
too [DRMS07]. SfM classically requires running RANSAC over
more suggested interest-point matches than the Euclidean trans-
form (five are needed at minimum). SfM then estimates 3D cam-
era poses and 3D scene point locations, and finally optimizes
these estimates globally using repeated steps of Bundle Adjust-
ment (BA) [HZ06]. The stages of SfM are normally deterministic
and notoriously computationally expensive, but we are particularly
inspired by the recent work of [COSH11] who use a less costly op-
timization to compute an initialization for a single iteration of BA.
They convert the deterministic pairwise estimates to probabilistic
constraints on a graphical model, which they solve with Loopy Be-
lief Propagation [MWJ99]. The probabilistic approach gives a prin-
cipled method of incorporating other information, such as geotags.
Instead of replacing the final half of the BA pipeline with a prob-
abilistic system, we propose to model pose probabilistically from
the beginning.

Rendering & Interaction Much like the direct manipulation
works mentioned already and our own interface, Dynamic Mo-
saics [GS12] prominently display for interaction a current frame
from the input footage. Their rendering method occupies a mid-
dle ground between ours and that of classic image mosaics, in that
they dynamically stitch onto that frame some spatially neighboring
frames, choosing neighbors which share a large number of inlier
correspondences. This obviously limits the variety of scenes which
can be displayed, so they have an alternate mode based on the simi-
larity transform, which requires somewhat fewer correspondences.
We require no explicit correspondence points.
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Interest-point based registration with subsequent Bundle Adjust-
ment has allowed numerous interesting IBR prototypes to emerge.
Panoramic Video Textures (PVT) [AZP∗05] register and play video
clips inside an otherwise static cylindrical panorama. A compet-
ing PVT system [RAPLP05] allows parts of the XY T -volume to
be played back in different order, e.g. making explosions look like
implosions. Also reliant on interest point matches but with an al-
ternative optimization to BA [LGW∗11] are able to stabilize shaky
videos to follow different target trajectories.

The Lumigraph [GGSC96] and Light Field Rendering [LH96]
cleverly allow the user to recombine the rays captured by an array
of cameras. Interfaces allow users to navigate the plenoptic func-
tion spatially, and to simulate new focal lengths. [SH99] showed
a hardware based system for capturing a reduced-size 3D plenop-
tic function. The recent system of [DLD12] massively simplifies
the process of capturing light fields by giving fast feedback about
what parts of the static scene have been adequately filmed. They
employ the PTAM [KM07] real-time SfM system which registers
their cameras if enough interest points are available, and the camera
does the characteristic “SLAM wiggle” [HKM09].

[AAC∗06] discuss the differences between strip panorama sys-
tems, and propose a multiviewpoint panorama which stitches to-
gether large regions of photos that were shot with a hand-held
camera. The strength of their interface is that users can over-
ride the stitching to (de)emphasize perspective effects in differ-
ent parts of the scene. Their system relies on the Bundler SfM
system [SSS06] for camera registration. The Street Slide system
of [KCSC10] shows another interface to multiviewpoint panora-
mas, which was part of our motivation for a 2D interface. The Photo
Tourism work of [SSS06] and [SGSS08] was instrumental both for
releasing Bundler and the insight that sufficiently large photo col-
lections could be browsed in 3D. When images show the same ob-
jects or objects in-the-round, the viewer’s transitions are rendered
smoothly, and [GAF∗10] offer especially smoothed transition ef-
fects for images that are very far apart in 3D. These systems prefer
to cull low-texture and low-quality images, and endeavor to elimi-
nate moving objects from their collections. In contrast, our users are
filming video of something specific for interaction in a 2D swipe in-
terface, need that sequence to work, and may not have the benefit
of static scenes and distinct interest points.

3. Swipe Mosaic Construction
Our system takes as an input a video sequence or temporally or-
dered set of images {I1, I2, . . . , IN} and presents them in a new type
of interactive mosaic. Valid inputs to our system include scenes
which could be used to create a panoramic mosaic, but also in-
clude scenes containing significant parallax and dynamic objects,
so the Swipe Mosaic avoids trying to stitch all the inputs together
seamlessly. As an overview of our approach, we first select pairs
of images and make predictions of the relative camera motion for
each pair, before combining those predictions using a global least
squares optimization. Predictions are made with random regression
forests, trained on synthetic data. The predictions form a distribu-
tion over possible camera motions. The layout algorithm locates
the images on a 2D manifold so they can be visualized using our
Swipe Mosaic interface. Finally, several postprocessing steps may
be performed to further improve the viewing experience. The over-

all pipeline of our visual odometry regressor and layout system is
shown in Fig. 2.

Pair selection generates a set P = {( j1,k1), . . .}, following
which camera motion will be estimated between image pairs
{(I j1 , Ik1),(I j2 , Ik2), . . .}. A number of strategies can be employed
to select pair indices – some selection is necessary as comparing
O(n2) pairs is computationally infeasible for large sequences. It
is possible to anticipate loops in the ordered set by finding image
pairs which are temporally distant but show the same location. Pos-
sible techniques for modeling such similarity include SIFT match-
ing [Low04], GIST scene descriptors [OT06], simple L2 intensity
distance, or geodesic distance models such as Isomap [TDSL00].
We evaluated these methods but achieved superior results by ini-
tially picking only close temporal neighbors, and finding loop clo-
sures at a later stage (§3.3).

3.1. Learning and Inference on Image Pairs
We seek a probabilistic estimate of the camera motion between a
pair of images. To that end, we use Regression Random Forests
(RRF) [CSK11], in turn based on Random Forests (RF) [Bre01,
Ho95]. Other supervised learning algorithms could have been used,
but RRFs produce inherently probabilistic multivariate output mak-
ing them an excellent fit. Testing on unseen data produces a distri-
bution of predictions, one from each tree. We fit a Gaussian to these
predictions to obtain a parametric distribution, but in principle, the
raw distribution could be used. As well as their probabilistic na-
ture, RRFs train and test quickly, can handle high dimensional fea-
ture vectors, and are trivially parallelizeable. RF algorithms have
been successfully applied in a range of applications, including hu-
man pose recognition [SFC∗11] and supervised mesh segmenta-
tion [KHS10]. Relative interframe motion is modeled here using
the 2D Euclidean transform, so whether training or testing, the
label-space consists of three degrees of freedom: two for transla-
tion and one for rotation. In practice, we build an RRF for trans-
lation and an essentially identical RRF for rotation to reduce the
amount of training data needed. The rotational RRF is trained to
predict small camera rotations around the optical axis and is used
for postprocessing. In both cases the training is with synthetic data,
as documented in the appendix. Differences between the two RRFs
are highlighted in §3.3 and §4.

3.1.1. Feature Computation
A 3599 dimensional feature vector is extracted from each image
pair by encoding the responses of many Normalized Cross Correla-
tion (NCC) comparisons between different segments of the images.
NCC was chosen because it concisely describes many properties
of image pairs. Images containing similar, distinctive, localizable
content produce unimodal NCC responses (Fig. 3a). Textureless or
uniform input images produce approximately flat NCC responses
(Fig. 3b). Images with repeated structure produce periodic NCC
responses (Fig. 3c). Our feature extraction aims to detect and en-
code all these situations, allowing the RRF to learn the mapping
between NCC responses and camera movement.

For image index pair ( j,k) ∈ P we take I j as the template im-
age and Ik as the search image. A pyramid of patches is defined by
placing regular 1× 1,2× 2,4× 4,6× 6 and 8× 8 grids onto each
image (the 6× 6 case is shown in Fig. 4). This approach of taking
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(a) Image pair (left/middle) with a strong texture, producing a unimodal
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(c) Image pair (left/middle) with repeated structure producing multimodal
NCC response (right).

Figure 3: Representative types of image pair we may see (left, mid-
dle), along with their corresponding NCC response (right).

Figure 4: Template (left) and search (right) patches representing some
combinations of image regions on which NCC is run (6× 6 grid level).
Color reflects correspondence. Note the edge truncation behavior.

patches at different scales and areas at each grid resolution in the
template image is compared using NCC to a region of the search
image creating a response image N. To allow for scene movement
between the images, each template patch is compared to a larger
region in the search image, by expanding out 1 patch in each direc-
tion unless the edge of the image prevents this. In Fig. 4 the colored
patches indicate representative examples of regions that would be
compared. This first step (FEATEXTRACTIMG in the pseudo-code,
found in the appendix) produces 121 different NCC responses, each
of which is then encoded to a few numbers, the concatenation of
which forms our full feature vector.

A strongly peaked NCC response indicates a likely offset for
the scene content (i.e. this portion of the scene contains localiz-
able texture). In this case providing the location of this offset to
our machine learning system is crucial, as (for example) if every
NCC comparison contained a strongly peaked offset to the left, this
is strong evidence that the camera has moved to the right. If the
response is relatively flat, i.e. the peak value is close to the mean
value, then the patches compared are likely textureless and so no
definitive decision can be made about the camera motion. Note that
this absence of certainty is an equally important input to our ma-
chine learning technique (it may make the RRF more likely to out-
put a large variance). The NCC image containing a “ridge” (peak

only localizable in 1 dimension) indicates certain types of scene ge-
ometry (and certain degrees of belief about possible motion) and so
must also be concisely encoded. Each NCC response is encoded as
follows (ENCODENCC), and the concatenation of all these defines
our feature vector.

Minimum, maximum and mean values are computed to give an
idea of the response distribution, particularly how the peak value
compares to the rest of the values. The 2D offset of the peak loca-
tion is found, and the sizes of the input patches are used to convert
it to a normalized offset, so that when the input patches are exactly
the same and the peak indicates this, the offset (0,0) will be added
to the feature vector. The shape of the response is captured by com-
puting Laplacian Coordinates around the peak point. We apply the
Laplacian operator 1

4
[
1 −2 1

]
to 1D “slices” through the 2D

surface of N. These slices all coincide with the peak, and are made
at 4 different orientations and two different scales (so the points
away from the peak which are multiplied by 1 are either 10 or 20
pixels away). This 8D descriptor encodes the shape of the peak - if
all the numbers are large then the peak is strongly localizable in all
directions. If all the numbers are close to zero this means the peak is
very wide, and if (for example) the numbers for horizontal “slices”
are low and the numbers for vertical slices are large, the peak is a
horizontal “ridge”. A normalized histogram with 5 equally spaced
bins between -1 and 1 is also stored.

The final step, which we only carry out for the 1× 1 and 2× 2
grid resolutions, is to run a Gabor filter bank G over the image. The
filters G ∈G vary in orientation, scale and frequency in order to try
to capture the multimodal NCC response produced by images with
repeating structure. The min, max, mean and median of each Gabor
response is stored, thus completing our feature encoding scheme.
The parameters used to generate the filter bank can be found in the
supplemental material.

3.2. Layout to Global Coordinates
The pairwise estimates provided by the Random Forest use a rel-
ative coordinate system, but to navigate images as a Swipe Mo-
saic we require image locations in a global coordinate system. By
limiting motion to a 2D plane and approximating the RRF output
as Gaussian, we solve this problem in closed form using linear
least squares in a similar spirit to [OLT06]. For each ( j,k) ∈ P ,
the RRF gives a mean µ jk = [µx

jk µy
jk]

T and standard deviation

σ jk = [σx
jk σ

y
jk]

T . An error function

E(x) = ∑
j,k∈P

(
(xk− x j)−µx

jk

σx
jk

)2

+

(
(yk− y j)−µy

jk

σ
y
jk

)2

(1)

is defined on the vector of all camera locations

x =
[
x1 y1 x2 y2 . . . xN yN

]
(2)

by summing squared differences between the actual pairwise off-
sets in x and the predictions, weighted by the prediction uncertainty.
E(x) can be written as e(x)T e(x) where

e(x) =
[
(xk1−x j1 )−µx

j1k1
σx

j1k1

(yk1−y j1 )−µy
j1k1

σ
y
j1k1

. . .

]T

. (3)

e(x) can be written as Ax− b where each row of A contains ze-
ros in all but two entries, at locations to match the variables in x,
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containing positive and negative inverse standard deviation, and the
corresponding element of b is the mean prediction from the forest
divided by the standard deviation. Two more rows are added to A
and b to overdetermine the system by forcing (x1,y1) to be (0,0).
The unique solution for x is determined by solving the least squares
equation, Ax = b.

3.3. Post-processing

Translational Loop Closure

Errors, however small, will accumulate over long sequences, so that
loops in the camera path may not line up correctly. To mitigate
this we automatically find “loop points” – pairs of images which
are temporally distant but close in the 2D coordinate space. We
compute each image’s 5 nearest spatial neighbors, and any neighbor
whose timestamp differs by more than 25 frames becomes a loop
point. The number of pairs chosen by this technique is typically
small. For each loop point image pair we compute a feature vector
and corresponding prediction from the translational RRF. A new
layout is computed from the combined set of temporal and loop
point predictions.

Rotational Correction

Video recorded freehand will include rotation around the optical
axis. When transitioning between frames in the viewer (§3.4) the
differences will be small if moving in order, but at a loop point the
angular change can be large. Even a few degrees is noticeable, so
rotation is corrected for. A second “rotational” RRF was built using
the same features as before, but trained to predict optical axis rota-
tion between two images. Synthetic training data was again used,
this time with random rotations around the optical axis. As with
the translational loop closure, we predict rotations for image pairs
which are found at “loop points”. Note that the estimated transla-
tion is applied before calculating the rotation, as the RRF is trained
on rotation without translation. Relative rotation estimates are com-
bined using an analogous technique to the least squares layout al-
gorithm (§3.2).

3.4. Swipe Mosaic Interface

Versions of the viewer interface exist to run both natively and via
web app, with the web app running on a mobile phone. In both
cases the interface shows the current image in sharp focus, with the
surrounding images optionally shown blurred. The user navigates
by clicking anywhere on the image and dragging (“swiping”). The
swipe determines where in the 2D map the program looks for a
new image to transition to. This behavior is similar to PDF view-
ers and online mapping services. A “minimap” conveys the overall
layout of the scene, and highlights the location of the currently dis-
played image. As an alternative navigational aid, users can enter
“Picasso view” which zooms out and displays all of the images.
These images will not line up perfectly as in a panoramic mosaic,
but provide a sense of the scene as a whole. Smooth transitions are
used throughout, with the intention that if the user clicks on a rec-
ognizable feature that feature will remain under the cursor as they
swipe. Please see supplementary video to see it in action.

Sequence Characteristics
FENCE∗ Easy sequence, abundant texture
MINI Abundant texture
LOBBY∗ Abundant texture, demonstrates loop closure
FACADE Abundant texture
GRATING Partially textureless
RAILS Large scale repeated structure
SKATER Dynamic and deforming foreground object
FLOWERS† Dynamic objects, non planar motion, [GF12] failure case
SCULPTURE Little texture, motion blur
LEAVES Dynamic and deforming scene
OBELISK Non planar camera path
HANDBAG Dynamic specularities
WALL Ambiguous motion due to repeated structure
VINYL Motion blur, textureless occluding object
ISS∗ Demonstrates Loop closure
DINO Moving background elements
PRISM Automatic gain control, CCD overload
AQUATIC† Scene from movie, contains dynamic objects + parallax
FREIBURG2† 6D Ground truth available

Table 1: Test sequences along with their defining characteristics.
∗ – only appears in supplemental material.
† – not captured for purpose of building a Swipe Mosaic.

4. Experiments
Experiments were performed on videos filmed by our users using
mobile phones, camcorders and SLRs. Videos recorded for other
purposes were also used. We examine the performance of the pair-
wise regressor, and the overall Swipe Mosaic rendering and visu-
alization system quality. Qualitative and quantitative comparisons
are performed on a variety of scenes, listed in Table 1 with short
descriptions.

Many baseline algorithms that produce camera paths on simple,
textured, static, planar scenes are compared to. When they work
they also prepare a sequence for use as a Swipe Mosaic. We demon-
strate that our approaches degrades gracefully with footage that is
less simple, in a variety of ways.

4.1. Regressing Motion Between Image Pairs
We start by inspecting what the regressor has learned about the
relationship between the computed features and estimating trans-
lations. When images contain unambiguous texture (Fig. 5a) our
regressor is confident in both x and y. For scenes with repeated tex-
ture but a unique vertical structure (Fig. 5b), the regressor outputs a
small σ

x and large σ
y, reflecting the certainty in x and uncertainty in

y (aperture problem). Fig. 5c show the result of using the same type
of regressor and features, but training to estimate the in-plane rota-
tion between two images. We expect the rotational RRF to perform
better with a customized feature vector, but the vector designed for
translation allowed rotational correction within ±5◦.

The RRF training process selects some elements of the feature
vector more frequently than others for estimating the transform pa-
rameters at test time. Fig. 6 shows spatial histograms for each scale
of the NCC grid, indicating the frequency with which a feature
computed from that NCC sub-window was chosen by the forest
training process. Interestingly, the most used level is the 4×4 grid,
and there is a strong peak within that histogram for the most cen-
tral 4 of the 16 possible NCC sub-windows. While using a single
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Figure 5: In each column the top two images were inputs resulting in the
RRF output at the bottom. The graphs in a) and b) show 2D results from
the Translational RRF, and c) shows 1D results from the Rotational RRF.
Blue dots show individual tree outputs, red dots and bars show the mean
and variance of the fitted Gaussian.

Figure 6: Spatial histograms showing the quantity and arrangement of fea-
tures chosen most frequently during training from each level of the NCC
grid, for our translational RRF.

NCC calculation to compare whole images is a common approach
for image alignment, these graphs show that the finer grained NCC
sub-windows are providing important extra information to get the
right offset. The top level of features (representing a single global
NCC comparison) are chosen by the forest training process 246
times, whilst the 4× 4 resolution features are chosen 665 times.
We know that this is due to these features being more informative,
rather than simply more numerous, because the 8× 8 level, which
contains a larger number features than all the other levels put to-
gether, is only chosen 121 times.

4.2. Swipe Mosaic Visualization
A key property of Swipe Mosaic visualization is being able to grab
elements and navigate spatially between temporally distant frames.
As shown in the supplementary video, it is possible to maintain a
sense of position while navigating within the wider scene. Possible
applications for the system include recording the damage of a car
accident for later scrutiny, or examining products when shopping
online.

4.3. Suitable Image Sequences
Swipe mosaics are best observed in motion, so we present qual-
itative results in the video. Our system performs best when the
camera motion and scene geometry are parallel and both approx-
imately planar (as with the training data), but we are robust to de-
viations from this setup. OBELISK shows that if the object of interest
fills much of the screen, we infer a 2D version of the motion as
the camera rotates around the object. DINO contains people in the
background moving in various directions, but the transforms com-
puted allow navigation along the main item of interest. The level 4
histogram in Fig. 6 helps explain this; the RRF learns that the cen-
ter of the image is usually more informative, and so treats the mo-
tion implied by central pixels as more informative than that implied
by edge pixels. View dependent effects such as the specularities in
the HANDBAG sequence do not lead to incorrect motion estimates.
SKATER, however, features non rigid movement in the centre of the
frame and only the outskirts imply the (correct) sideways motion.

To demonstrate the utility of our system on existing sequences
filmed by others, we processed a scene from the movie “The Life
Aquatic with Steve Zissou”. AQUATIC features the camera pan-
ning over a cutaway version of a boat, traveling between rooms
and showing different characters. The camera trajectory roughly
matches the assumptions made in our training data, but the scene
contains large amounts of parallax due to depth variation, as well as
dynamic characters. We put 600 frames into our system and built
a swipe mosaic which allows intuitive navigation between seven
distinct areas. Sample frames from transitioning “through” a wall
are shown in Fig. 7. Please see the supplemental video to view this
scene in motion.

Sequences such as HANDBAG can be processed successfully de-
spite containing out-of-plane camera translation and strong spec-
ularities. Note that if a loop point featured images with differing
scale, this would pose a problem for our system both in terms of
the loop closure algorithm and in terms of viewer artifacts. To test
the limits of our system, we ran it on a challenging part of the FLOW-
ERS scene, a failure case from [GF12], which the authors describe
as troublesome due to the pedestrians occluding geometry and cut-
ting feature trajectories. The camera is moving forwards as well
as sideways so that the contents of the flower stall appear to be
moving roughly diagonally in image space. Our system copes with
this motion, and we can browse the scene by swiping elements on
the flower stall. This challenging video also demonstrates a failure
mode of our system; obstructing bystanders in the image center,
combined with motion that differs significantly from that of our
training data, makes for a very difficult scene.

4.4. Qualitative Evaluation against Baseline Algorithms
We evaluate the performance of our odometry regressor by com-
paring to simple NCC based alignment [Sze06], VisualSfM by
Wu et al. [Wu07, WACS11], Viewfinder Alignment by Adams et
al. [AGP08], Real-time image-based tracking of planes using
Efficient Second-order Minimization (ESM) by Benhimane &
Malis [BM04], and “microSfM” or “µSfM”, a new system which
uses the methodology of Fundamental Matrix computation but pro-
duces a 2D translation. While these techniques can be applied to
a wide range of sequences, we confirmed known circumstances
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Figure 7: A series of screenshots taken during a single swipe, navigating AQUATIC, a scene generated from the movie “The Life Aquatic with Steve Zissou”

under which each of the baselines failed, and our technique suc-
ceeded. Please see the Appendix and supplementary video for de-
tails.

4.5. Quantitative Evaluation Against NCC
While graceful degradation is easy to illustrate qualitatively, it is
reasonable to check if regression using our NCC-based feature vec-
tors is actually different than just using NCC directly, at least for
best-case in-plane motion and static scenes with negligible mo-
tion blur. To quantitatively evaluate the odometry of our system,
we compare on the FREIBURG2 sequence from the TUM [SEE∗12]
dataset. This dataset consists of Kinect video sequences alongside
6D ground truth camera positions/rotations, generated using 100Hz
active motion capture. Unlike the rest of the dataset, the camera
path in FREIBURG2’s first 950 frames contains almost exclusively
vertical and horizontal translation. This is the kind of motion that
both NCC and our system should be able to handle. The appear-
ance of the indoor office scene is unremarkable in terms of texture
or dynamic elements.

Both NCC and our system were used to generate 2D camera
locations for the sequence. Every pair within a 4 frame temporal
window was used to generate relative offset predictions. For both
systems, the offsets were fed to our least squares layout algorithm.
To compare the ground truth with the 2D solution the 6D positions
were projected to 2D – see appendix for details.

NCC gave a final Mean Squared Error of 14.2 cm2 against our
system’s 12.9 cm2, an improvement of 9.4%. The alignments re-
sulting from both systems are shown in Fig. 8. It is interesting to
note that both algorithms make similar mistakes, owing perhaps to
our system being built on top of NCC based features, but our sys-
tem produces errors of smaller magnitude, especially towards the
center of the horizontal axis, because it incorporates more informa-
tion than just the top level, entire-image NCC comparison. As well
as comparing with this fitted plane, we tried aligning to each of the
planes defined by one individual camera’s orientation, by project-
ing all other cameras onto the local “right” and “up” vectors. The
results of this are in the appendix. Unsurprisingly, whichever one of
the 950 cameras we choose, we see an improvement with our sys-
tem, as shown by the green line always being underneath the blue
line. This evaluation shows that even for a texture-rich real world
sequence, not captured for Swipe Mosaics, our system produces a
measurable improvement over the alignment produced by NCC.

Our evaluations show our robustness to visual phenomena found
difficult by other systems. In the presence of dynamic objects, lack
of texture, or repeated structure, we are able to compute 2D loca-
tions and browse the scene, degrading gracefully in the presence
of inconclusive visual information. Many of our sequences were
captured by users unfamiliar with the workings of the system, and
our success here demonstrates our robustness to input data straying
outside the assumptions of the training data.

5. Conclusions
Swipe Mosaics can be used to intuitively navigate video sequences,
including those where existing approaches struggle or fail. As seen
in the supplementary video, the Swipe Mosaic interaction provides
a good sense of a scene’s layout. Traditional panoramic image
mosaics undoubtedly have a cleaner overall appearance than our
Picasso-view, but we have obtained robustness in the presence of
view dependent effects, such as parallax and specularities, and pre-
serve the veracity of the image. Our RRFs, trained on synthetic
data, estimate visually-acceptable translations and rotations both in
textured scenes, where existing methods also work well, but also in
difficult scenes, where other methods become brittle or fail.

Motions omitted from the training set may perform badly, though
not always. For instance, forward motion is not in the training set,
yet the approach remains robust to it. However, as shown by the
FLOWERS example, occluders in the image center can cause failure.
A valuable improvement to the interface would be to give live feed-
back at capture time regarding which parts of the scene require
more detailed recording, e.g. as in [DLD12]. Swipe Mosaics will
hopefully encourage content-creators to document and share the
world around them.
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