Introduction to Machine Learning

Tom S. F. Haines T.S.F.Haines@bath.ac.uk

- What is ML?
- Examples/glossary
- Process walkthrough

(modified from intro of ML1 unit from Data Science MSc)

Programming Machine Learning Artificial Intelligence

• Programming:

Computer is an idiot – does exactly what you tell it to and nothing else!

• e.g. automatic gear box:

```
while True:
  if engine.revs > 5000 and
     transmission.gear < 5:
    clutch.disengage()
    transmisison.gear += 1
    clutch.engage()
  elif engine.revs < 1000 and
       transmission.gear > 1:
    clutch.disengage()
    transmisison.gear -= 1
    clutch.engage()
```

Imagine a car...

Imagine a car...

• Artificial Intelligence:

Computer uses optimisation to find the best solution to a well defined problem

• e.g. gps navigation:

```
graph.load_map('uk.h5')
graph.set_start('bath')
graph.set_end('bletchley')
route = graph.shortest_route()
```


Imagine a car...

- Machine Learning: Computer learns from examples (data) and (tries to) generalise to all inputs
- e.g. recognising road signs:

```
model = Recogniser('15mph_sign.h5')
while True:
    if model.search(camera.image()):
        engine.target = 6.7 # m/s
```


• Learning from data

• Learning from data

- Built on:
 - Maths, especially probability
 - Optimisation
 - Programming

(this makes it quite challenging!)

• Learning from data

- Built on:
 - Maths, especially probability
 - Optimisation
 - Programming

(this makes it quite challenging!)

- Warning 1: Not everyone would agree with this definition
 - overlaps with statistical models, data mining, ...

• Learning from data

- Built on:
 - Maths, especially probability
 - Optimisation
 - Programming

(this makes it quite challenging!)

- Warning 1: Not everyone would agree with this definition
 - overlaps with statistical models, data mining, ...
- Warning 2: ML and AI often used interchangeably due to fashion/journalists

• I don't know! (all the definitions suck)

- I don't know! (all the definitions suck)
- Wikipedia claims:

"Data science [...] is an interdisciplinary field about scientific methods, processes, and systems to extract knowledge or insights from data in various forms, either structured or unstructured, similar to data mining"

Isn't that just science?

- I don't know! (all the definitions suck)
- Wikipedia claims:

"Data science [...] is an interdisciplinary field about scientific methods, processes, and systems to extract knowledge or insights from data in various forms, either structured or unstructured, similar to data mining" Isn't that just **science**?

• Wikipedia also says:

"When Harvard Business Review called it "The Sexiest Job of the 21st Century" the term became a buzzword, and is now often applied to business analytics, or even arbitrary use of data, or used as a sexed-up term for statistics"

What can you do with it?

Supervised learning

- Learn a function: $y = f(\vec{x})$
- From (many) examples of input (x) and output (y)
- Majority of ML: Classification or regression...

Supervised learning: Classification

- Learn a function: $y = f(\vec{x})$
- Classification: y is **discrete**

Supervised learning: Classification

- Learn a function: $y = f(\vec{x})$
- Classification: y is **discrete**
- Identifying camera trap animals
 - Input: Image
 - Output: Which animal

Supervised learning: Classification

- Learn a function: $y = f(\vec{x})$
- Classification: y is **discrete**
- Identifying camera trap animals
 - Input: Image
 - Output: Which animal
- Predicting voting intention
 - Input: Demographics
 - Output: Preferred candidate (probabilistic)
 - Run on entire country \rightarrow Predict election winner

(peccary)

Supervised learning: Regression

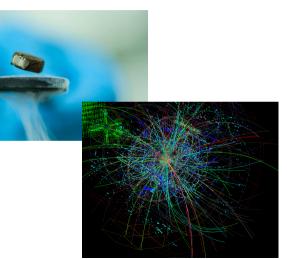
- Learn a function: $y = f(\vec{x})$
- Regression: *y* is **continuous**

Supervised learning: Regression

- Learn a function: $y = f(\vec{x})$
- Regression: *y* is **continuous**
- Predicting critical temperature of a superconductor
 - Input: Material properties
 - Output: Temperature

Supervised learning: Regression

- Learn a function: $y = f(\vec{x})$
- Regression: *y* is **continuous**
- Predicting critical temperature of a superconductor
 - Input: Material properties
 - Output: Temperature
- Inferring particle paths (LHC)
 - Input: Detector energy spikes
 - Output: Particle paths
 - Trained with simulation



Supervised learning: Further kinds

- Multi-label classification: y is a **set**
 - e.g. identifying objects in an image
 - e.g. text summarisation (reusing source sentences)

Supervised learning: Further kinds

- Multi-label classification: y is a set
 - e.g. identifying objects in an image
 - e.g. text summarisation (reusing source sentences)
- Structured prediction: y is anything else!
 - e.g. Sentence tagging: y is a sequence (such as part-of-speech tagging)
 - e.g. Automated design: y is a CAD model

Unsupervised learning

- No y!
- Finds *patterns* in data
- Examples:
 - Clustering
 - Density estimation
 - Dimensionality reduction

Unsupervised learning: Clustering

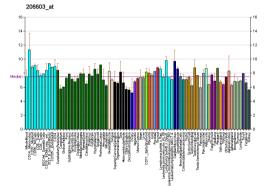
- Clustering:
 - Groups "similar" data points
 - Arbitrary similarity definition

Unsupervised learning: Clustering

• Clustering:

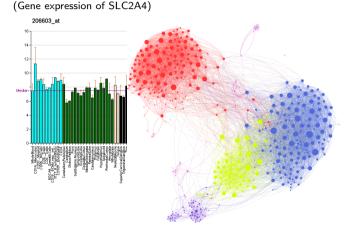
- Groups "similar" data points
- Arbitrary similarity definition
- Identifying *co-regulated genes*:
 - Input: Many expression level measurements
 - Output: Groups of genes that tend to express at same time

(Gene expression of SLC2A4)



Unsupervised learning: Clustering

- Clustering:
 - Groups "similar" data points
 - Arbitrary similarity definition
- Identifying *co-regulated genes*:
 - Input: Many expression level measurements
 - Output: Groups of genes that tend to express at same time
- Discovering social groups
 - Input: Friend graph
 - Output: Social groups (individuals may belong to several)



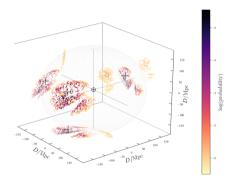
(A Facebook friend graph)

Unsupervised learning: Density estimation

- Density estimation:
 - Learns distribution of data
 - i.e. $x_i \sim P$

Unsupervised learning: Density estimation

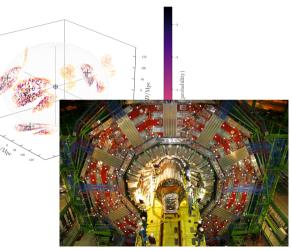
- Density estimation:
 - Learns distribution of data
 - i.e. $x_i \sim P$
- Finding coalescing binary neutron stars with LIGO
 - Input: Locations that explain detection
 - Output: Search order for optical follow up



Unsupervised learning: Density estimation

- Density estimation:
 - Learns distribution of data
 - i.e. $x_i \sim P$
- Finding coalescing binary neutron stars with LIGO
 - Input: Locations that explain detection
 - Output: Search order for optical follow up
- Detecting LHC problems
 - Input: Normal outputs
 - Output: Possible failures

Example of *abnormality detection*

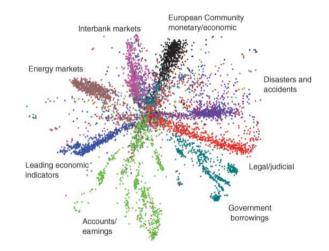


Unsupervised learning: Dimensionality reduction

- Dimensionality reduction / manifold learning:
 - Reduce dimensions while preserving information
 - Also used for visualisation (important for verification)

Unsupervised learning: Dimensionality reduction

- Dimensionality reduction / manifold learning:
 - Reduce dimensions while preserving information
 - Also used for visualisation (important for verification)
- Organising news
 - Input: Word vectors
 - Output: Position in layout



*-supervised

- Collecting data cheap
- Labelling data expensive

• Semi-supervised:

- Some labelled data
- Lots of unlabelled data

*-supervised

- Collecting data cheap
- Labelling data expensive

• Semi-supervised:

- Some labelled data
- Lots of unlabelled data
- Precise labels expensive, inaccurate labels cheap
- Weakly-supervised:
 - Learns from "weak" labels
 - Outputs "strong" labels

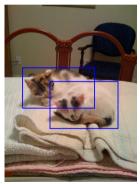
*-supervised

- Collecting data cheap
- Labelling data expensive

• Semi-supervised:

- Some labelled data
- Lots of unlabelled data
- Precise labels expensive, inaccurate labels cheap
- Weakly-supervised:
 - Learns from "weak" labels
 - Outputs "strong" labels

- e.g. finding cats
 - Image contains cat fast
 - Box around cat slow

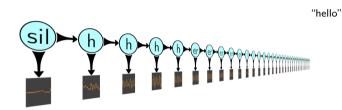


Graphical models

• **Represents structure** by drawing relationships...

Graphical models

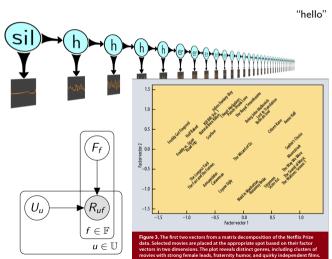
- **Represents structure** by drawing relationships...
- Voice recognition
- Hidden Markov model, used twice:
 - 1. Align phonemes with audio (weakly-supervised)
 - 2. Recognition using language model (structured prediction)



Graphical models

- **Represents structure** by drawing relationships...
- Voice recognition
- Hidden Markov model, used twice:
 - Align phonemes with audio (weakly-supervised)
 - 2. Recognition using language model (structured prediction)
- Recommender systems
 - e.g. for films
 - Input: User ratings (sparse)
 - Output: Omitted ratings

(estimating missing values)



Reinforcement learning

- Actions in an environment
- Delayed reward
- Examples:
 - Games, e.g. Alpha Go
 - Agents (inc. working together)
 - Robots

Glossary

Supervised

Classification

- Regularisation
- Multi-label classification
- Structured prediction
- Semi-supervised
- Weakly-supervised
- Graphical models

(incomplete!)

Unsupervised

- Clustering
- Density estimation
 - / abnormality detection
- Dimensionality reduction

/ manifold learning

• Reinforcement learning

Can also classify ML algorithms by...

Can also classify ML algorithms by. . .

- Answer quality:
 - Point estimate
 - e.g. "You have cancer"
 - Probabilistic e.g. "60% chance you have cancer"
 - Bayesian
 - e.g. "5% chance you have cancer"

Can also classify ML algorithms by. . .

- Answer quality:
 - Point estimate e.g. "You have cancer"
 - Probabilistic e.g. "60% chance you have cancer"
 - Bayesian
 - e.g. "5% chance you have cancer"

- Workflow:
 - Batch learning i.e. Collect data then learn
 - Incremental learning i.e. Learn as data arrives

Can also classify ML algorithms by. . .

- Answer quality:
 - Point estimate e.g. "You have cancer"
 - Probabilistic e.g. "60% chance you have cancer"
 - Bayesian
 - e.g. "5% chance you have cancer"
- Area:
 - Traditional
 - Computer vision
 - Natural language processing (NLP)
 - Interactive

- Workflow:
 - Batch learning i.e. Collect data then learn
 - Incremental learning i.e. Learn as data arrives

The process

- 1. Choose a problem
- 2. Obtain required data
- 3. Choose or design a model
- 4. Fit model to data using optimisation
- 5. Measure performance

(there are variants...)

1. Choose a problem

e.g. this toy problem:

Given something in the ocean identify if it is a fish or an invertebrate

1. Choose a problem

e.g. this toy problem:

Given something in the ocean identify if it is a fish or an invertebrate

Input: Yes/no answers to questions such as: Does it have teeth?

Output: Fish or invertebrate

2. Obtain required data

Animal name	bass	clam	carp	crab	catfish	crayfish	chub	lobster
Does it have teeth?	1	0	1	0	1	0	1	0
Does it breathe?	0	0	0	0	0	0	0	0
Does it have a backbone?	1	0	1	0	1	0	1	0
Is it aquatic?	1	0	1	1	1	1	1	1
Does it have a tail?	1	0	1	0	1	0	1	0
Is it a predator?	1	1	0	1	1	1	1	1
Is it an invertebrate?	0	1	0	1	0	1	0	1

- Use of 1 for "yes" and 0 for "no" is typical
- Note: Data collection is usually the hardest bit!

3. Choose or design a model

• This is a classification problem – supervised, output discrete

3. Choose or design a model

- This is a classification problem supervised, output discrete
- There are hundreds of models for solving it
- Lets use another "model": A rule (algorithm) created by you!

4. Fit model to data using optimisation

You have three minutes to come up with an algorithm:

Animal name	bass	clam	carp	crab	catfish	crayfish	chub	lobster
Does it have teeth?	1	0	1	0	1	0	1	0
Does it breathe?	0	0	0	0	0	0	0	0
Does it have a backbone?	1	0	1	0	1	0	1	0
Is it aquatic?	1	0	1	1	1	1	1	1
Does it have a tail?	1	0	1	0	1	0	1	0
Is it a predator?	1	1	0	1	1	1	1	1
Is it an invertebrate?	0	1	0	1	0	1	0	1

Write your algorithm down!

5. Measure performance I

- Previous slide was a training set
- Below is a **testing set**:

Animal letter	A	В	С	D	E	F	G
Animal name							
Does it have teeth?	1	0	0	1	1	0	1
Does it breathe?	0	0	1	0	0	0	1
Does it have a backbone?	1	0	0	1	1	0	1
ls it aquatic?	1	1	0	1	1	1	0
Does it have a tail?	1	0	1	1	1	0	1
Is it a predator?	1	1	1	0	1	1	1

• Apply algorithm and record results

5. Measure performance II

Animal letter	A	В	С	D	Е	F	G
Animal name	dogfish	octopus	scorpion	haddock	pike	seawasp	bear
Does it have teeth?	1	0	0	1	1	0	1
Does it breathe?	0	0	1	0	0	0	1
Does it have a backbone?	1	0	0	1	1	0	1
Is it aquatic?	1	1	0	1	1	1	0
Does it have a tail?	1	0	1	1	1	0	1
Is it a predator?	1	1	1	0	1	1	1
Is it an invertebrate?	0	1	1	0	0	1	mammal

• How well did your algorithm do? (ignore the bear!)

5. Measure performance II

Animal letter	A	В	С	D	E	F	G
Animal name	dogfish	octopus	scorpion	haddock	pike	seawasp	bear
Does it have teeth?	1	0	0	1	1	0	1
Does it breathe?	0	0	1	0	0	0	1
Does it have a backbone?	1	0	0	1	1	0	1
Is it aquatic?	1	1	0	1	1	1	0
Does it have a tail?	1	0	1	1	1	0	1
Is it a predator?	1	1	1	0	1	1	1
Is it an invertebrate?	0	1	1	0	0	1	mammal

- How well did your algorithm do? (ignore the bear!)
- Is the bear unreasonable?
- Does the algorithm really ask "Is it an invertebrate?"?

- 1. Has tail \implies fish
 - This is true for the training set, but violated by scorpions

- 1. Has tail \implies fish
 - This is true for the training set, but violated by scorpions
- 2. Has backbone \implies fish
 - Official biological definition
 - Not always obvious! e.g. caterpillars

- 1. Has tail \implies fish
 - This is true for the training set, but violated by scorpions
- 2. Has backbone \implies fish
 - Official biological definition
 - Not always obvious! e.g. caterpillars
- 3. Has teeth \implies fish
 - Defined to be true, and more visible
 - Invertebrates can have teeth-equivalent structures, e.g. a snail

- 1. Has tail \implies fish
 - This is true for the training set, but violated by scorpions
- 2. Has backbone \implies fish
 - Official biological definition
 - Not always obvious! e.g. caterpillars
- 3. Has teeth \implies fish
 - Defined to be true, and more visible
 - Invertebrates can have teeth-equivalent structures, e.g. a snail
- 4. Any others?

- 1. Has tail \implies fish
 - This is true for the training set, but violated by scorpions
- 2. Has backbone \implies fish
 - Official biological definition
 - Not always obvious! e.g. caterpillars
- 3. Has teeth \implies fish
 - Defined to be true, and more visible
 - Invertebrates can have teeth-equivalent structures, e.g. a snail

4. Any others?

If you get the right answer, does how really matter?

What happened?

- $1. \ \mbox{You} \ \mbox{found} \ \mbox{a rule that solved the problem for training data}$
- 2. You applied the rule to (testing) data

What happened?

- $1. \ {\rm You} \ {\rm found} \ {\rm a} \ {\rm rule} \ {\rm that} \ {\rm solved} \ {\rm the} \ {\rm problem} \ {\rm for} \ {\rm training} \ {\rm data}$
- 2. You applied the rule to (testing) data
- You could program step 2, e.g.

```
def invertebrate(fv):
    return fv['teeth'] == False
```


What happened?

- 1. You found a rule that solved the problem for training data
- 2. You applied the rule to (testing) data
- You could program step 2, e.g.

```
def invertebrate(fv):
    return fv['teeth'] == False
```

• But step 1 is less clear...

Supplementary definition

- Machine Learning is discovering the rule (step 1)
- Using the rule is just programming (step 2)

Supplementary definition

- Machine Learning is discovering the rule (step 1)
- Using the rule is just programming (step 2)
- Supplementary definition: A Machine Learning algorithm outputs code!

Supplementary definition

- Machine Learning is discovering the rule (step 1)
- Using the rule is just programming (step 2)
- Supplementary definition: A Machine Learning algorithm outputs code!
- But parameters are more practical than code, e.g.

```
# Learn these:
feature = 'teeth'
match = False
# Code of model:
def evaluate(fv):
  return fv[feature] == match
```


Rule search

• Can anyone describe their step 1?

Rule search

• Can anyone describe their step 1?

```
best = 0.0
for f in features:
    for m in [False, True]:
        accuracy = performance(f, m, train)
        if accuracy > best:
            feature = f
            match = m
```


Rule search

• Can anyone describe their step 1?

```
best = 0.0
for f in features:
    for m in [False, True]:
        accuracy = performance(f, m, train)
        if accuracy > best:
            feature = f
            match = m
```

 $\bullet\,$ This is the $decision\,\,stump$ or $1\,\,rule$ algorithm

(only works on really easy problems!)

- What is ML?
- Glossary of scenarios
- Typical process
- Walk through
- Absurdly simple algorithm

Further reading & sources

- "Information Theory, Inference and Learning Algorithms" by David J. C. MacKay
- "Pattern Recognition and Machine Learning" by Christopher M. Bishop
- "Computer Vision: Models, Learning, and Inference" by Simon J. D. Prince
- Zoo animal classification: https://archive.ics.uci.edu/ml/datasets/Zoo
- A paper analysing the theoretical performance of decision stumps: "Induction of One-Level Decision Trees", by Iba & Langley (1992) (Model originally proposed by psychologists to explain human behaviour in 1966!)

Legal I

Image of automatic transmission: CC BY-ND 2.0 Kecko
https://www.flickr.com/photos/70981241@N00/1876479840

Image of speed sign: CC BY-SA 3.0 Jayron32
https://en.wikipedia.org/wiki/File:Antique_New_Hampshire_speed_limit_sign.jpg

Camera trap images: CC BY 2.0 J.N. Stuart https://www.flickr.com/photos/usfwshq/albums/72157628775623325/with/6659380637/

Particle tracks: Copyright CERN, stolen without permission

Legal II

Gene expression: CC BY-SA 3.0 Genomics Institute of the Novartis Research Foundation https://commons.wikimedia.org/wiki/File:PBB_GE_SLC2A4_206603_at_fs.png

Facebook social graph: Stolen, license unknown https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network

News story analysis: Stolen, license unknown http://nikhilbuduma.com/2015/03/10/the-curse-of-dimensionality/

Kittens: CC BY 2.0 Kacie "Aurora" https://www.flickr.com/photos/toodamnadorable/3059980811/