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ABSTRACT DEMONSTRATION SPECIFICS
In the security domain a key problem is identifying i l] .] ! ! = [. = |:. .:| e The graphical model is
rare behaviours of interest. Training examples for | | ¢ This demo uses a set of documents with a 5X5 a) @ shown to the left.
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methods are wused
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these behaviours may or may not exist, and if they grid of words, visualised as pixels in an image.
do exist there will be few examples, quite probably | | e There are 10 topics - 5 vertical and 5 horizontal b) I I_J_I

ONE. We present a novel Wegkly superv.ised algo- lines. Only one orientation is in each document.
rithm Eh?t Cag detect behafvmur}sl.ﬂl}la;thelther hfave e There are 3 abnormal topics and 2 cases of normal n ﬂ E ﬂ !
never before been seen or for whic ere are few : ..
topics appearing in the wrong document.
examples. Global context is modelled, allowing the pies 2PP 5 5 c) d)

detecti f ab | el that in isolati e a-d are the results for dDHDP; e-¢ the results for
C e O o DT DERATOEES e T BOTEHOn dLDA. The normal topics (4 and ¢) and abnormal

appear normal. . - . l I _ I I - I l .
/ t9p1cs (c and f) are learned by both approaches. e) B - — -

> |® dDHDP infers the document clusters, as given by
SOLUTION OVERVIEW the histograms b nﬂm -u
e Topic models such as Latent Dirichlet Alloca- | |® dDHDP discovers normal topics at abnormal g o)

Base measures are
represented by a box
containing the entities
drawn from them, con-
nected to the relevant
Dirichlet process [DP].
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archical Dirichlet Processes [DHDP] cluster the _ 2 4 6 8 10 12 14 16 > 4 6o 8 0 12 14 1 dLDA does no better than chance. Y

A collapsed Gibbs
sampler is used.

video clips, and hence model the normal co-
occurrence of behaviours. They also use non- | =
parametric Bayesian methods, which saves on RESULTS
parameter tuning.

tion [LDA] can model the behaviour in a video. times (d), a task at which dLDA fails (g). o S combines a DP with
Features [words] are extracted from the video, 1L 100 - The graphs show Pgrformance 45 ‘ 14 ial t _
and then the video is split into short clips [doc- 80 - _ the number of training examples _@ ajt mu 1nton}1a , to cre
uments]. Each clip is modelled as a mixture of o o0 - ——awor | jncreases. The left is for the abnor- d Z Z seb e uselr Ifm'
—— dloA vided abnormal top-
simultaneously occurring behaviours [topics]. . 0 - mal documepts, where dLDA suc- | s X P f
. . - ceeds, the right for normal top- @ 1S Wi € NUMDEr O
e More sophisticated methods such as Dual Hier- ics in abnormal contexts, where normal topics learned.
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Real time analysis of
new clips is obtained
with a varient of the

e DA and its relatives are unsupervised models, _ left to right algorithm.
and abnormal behaviour can only be detected
by its low probability. (7
¢ g ’ CONCLUSION
o delta LDA [dLDA] allows for semi-supervised .
learning, such that if you have a video clip with e The approach captures a class of behaviours
abnormal behaviour in it you can train the topic dDHDP that previous approaches could not...
model to classify that behaviour. Unsupervised dLDA e ..butitdoes so at the expense of a very complex
detection continues to work. ‘. o , ! i r— i model.
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e We introduce Delta-Dual Hierarchical Dirich- S - = | 15€ POSIHIVE TatE "" ' - | o [t takes a long time to train the model...
let Processes [dDHDP], which combines these | |4 Results for the mile end data set are e Tt is possible to do dual discovery -  dDHDP = 83.7% e ...though can run in real time when analysing
two methods, and gains th.eIr respective advan- presented. both supervised and unsupervised [ 3.4 | 13 | 37 | s7.9% new documents.
tages. It has the novel ability to learn models learning. |
for abnormal behaviours that consist of normal | | ¢ Two kinds of abnormality are used 4 6 | 1 | 545% e Simpler models should be tried, to see if they
behaviours occurring in an abnormal context. - a u-turn (above, left) and drivinge Using a set of abnormal behaviours | 22 3 | 45 | 64.3% can do the same thing.
e As an example a person normally crosses the frorp the n.mddle. area to the right on Whl(’:h the. .algonthm is 10t JIDA = 74.92% % Its hard to know when it has converged.
. . . . whilst traffic continues to travel ver- trained, in addition to the two be-
road when there is no traffic - this fact is . . . C el . 351 | 22 | 41 | 84.8%
. . tically (above, right). haviours on which it is trained, a A
learned, and a person crossing the road during , 0 11 0 | 100.0% M
traffic will appear abnormal. A model of this ' ' ROC curve is generated (above, cen- ORE:.
N | PP nal. = o Confusmr.l matrices are p.resented tre). dDHDP again shows an advan- 56 8 6 8.6% » . .
ehaviour can be learnt given few training ex- to the right, demonstrating that In addition to the paper an implemen- [a]; -, [=]
amples, possibly only one, allowing its future dDHDP is the better approach. a5¢ tation in python can be obtained from ':I!:i'{l.-:I
detection. thaines.com. [=] -




