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1 Purpose

This document contains notes on how to handle the multivariate Gaussian1

in a Bayesian setting. It focuses on the conjugate prior, its Bayesian update
given evidence and how to collapse (integrate out) drawing from the result-
ing posterior. Sampling is also covered for completeness. All content has
been initially gleaned from the book Bayesian Data Analysis by Gelman,
Carlin, Stern and Rubin, with extra input from many other sources, plus a
certain amount of working out on my part, mostly for consistency verifica-
tion purposes. Main motivation is that even the referenced book does not
give all the useful equations, and I wanted all the equations in one clean
document with consistent notation to minimise the chances of a mistake.
I also prefer to work with the precision matrix rather than the covariance
matrix.

2 Introducing. . .

The multivariate Gaussian distribution can be given in terms of its density
as

P (x|µ,Λ) =
exp(−0.5(x− µ)TΛ(x− µ))

(2π)d/2|Λ|−0.5
(1)

where x and µ are length d vectors and Λ is the d × d precision matrix.
| · | indicates the determinant. Λ, the precision matrix, is the inverse of
the covariance matrix that is usually used, Λ = Σ−1. Both the precision
and covariance matrices are symmetric and positive definite (Inverse op-
eration maintains these two properties.). Denominator of the fraction is
the normalising constant. The Gaussian is generally denoted x ∼ N (µ,Σ),

1Otherwise known as the normal distribution, which is really silly as there is nothing
inherently normal about it. People just like to pretend they can apply it to just about
anything without consequence.
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a convention held throughout this document despite the use of precision
rather than covariance.

3 Conjugate prior

The conjugate prior of the multivariate Gaussian is comprised of the multi-
plication of two distributions, one for each parameter, with a relationship to
be implied later. Over the mean, µ, is another multivariate Gaussian; over
the precision, Λ, is the Wishart distribution.

For the purpose of understanding the Wishart distribution a draw can
be represented as2

Λ ∼ W(V, n) =
∑
i∈[1,n]

xix
T
i , xi ∼ N (0, V ) (2)

where N (0, V ) is a draw from the Gaussian with a mean of zero and a
covariance of V . This is quite simply the scatter matrix of n draws from a
Gaussian. The actual distribution, which is only valid when n ≥ d, d being
the number of dimensions, is given by its density as

P (Λ|V, n) =
|Λ|(n−d−1)/2 exp(−0.5trace(ΛV −1))

2nd/2|V |n/2Γd(n/2)
(3)

where Γd(·) is the generalised multivariate Gamma function, which is defined
in terms of the normal Gamma function as

Γd(n/2) = πd(d−1)/4Πi∈[1,d]Γ((n+ 1− i)/2) (4)

Note that this definition of the Wishart allows n to be any real value, rather
than just a natural number, which can be useful for a weak prior. Naming
convention is to refer to n as the degrees of freedom and V as the scale
matrix.

Using the Wishart distribution we may define a draw of the parameters
necessary for a Gaussian, N (µ,Λ−1), as

Λ ∼ W(Λ0, n0) (5)

µ|Λ ∼ N (µ0, (k0Λ)−1) (6)

The four given parameters - n0, k0 ∈ R, µ0 ∈ Rd and Λ0 ∈ Rd×d - parametrise
the conjugate prior over a multivariate Gaussian distribution.

2It can help to contrast this with the definition of the Gamma distribution, for which
this is one possible multivariate generalisation.
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4 Bayesian Update

Given a prior and new evidence naturally updating to get a posterior is
desired. The previously given choice of parameters make this easy:

nm = n0 +m (7)

km = k0 +m (8)

µm =
k0µ0 +mx̄

k0 +m
(9)

Λm =

(
Λ−10 + S +

k0m

k0 +m
(x̄− µ0)(x̄− µ0)T

)−1
(10)

where
S =

∑
i∈[1,m]

(xi − x̄)(xi − x̄)T (11)

which is the scatter matrix of the evidence. As should be quite obvious from
the context the xi are the m samples that constituent the evidence and x̄ is
their mean. Given the nature of the update of Λm it can be computationally
advantageous to store its inverse instead, at least whilst performing lots of
Bayesian updates. It would also not be that unusual to merge nm and km
given their identical update, just storing separate initial values.

5 Integrating out

Given a posterior calculated using the above one would traditionally draw
a Gaussian from it, which is in turn used to determine the probability of
a specific sample, x, being drawn. Alternatively one can integrate out the
intermediate Gaussian, which is highly advantageous if the evidence only has
a few samples such that the Gaussian is not well defined. This occurs with
a Dirichlet process mixture model for instance - when Gibbs sampling you
have to work out the probability of a sample being drawn from a Gaussian
drawn directly from the prior, without any extra evidence. There are two
variables to integrate out - µ and Λ, and they can be done in sequence.

To remove the mean, µ, it has to be summed out; for the moment we
can ignore the probability distribution on Λ as it has no relationship to µ

P (x|k0, µ0,Λ) =

∫
P (x|µ,Λ)P (µ|µ0, k0,Λ)dµ (12)
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where the two rhs probabilities are Gaussian, and using a slight abuse of
notation are given by

P (x|µ,Λ) = x ∼ N (µ,Λ−1) (13)

P (µ|k0, µ0,Λ) = µ ∼ N (µ0, (k0Λ)−1) (14)

This can be interpreted as the convolution of one Gaussian by another

f(µ) = µ ∼ N (µ0, (k0Λ)−1) (15)

g(x− µ) = x− µ ∼ N (0,Λ−1) (16)

P (x|k0, µ0,Λ) =

∫
f(µ)g(x− µ)dµ (17)

for which the result is well known to be yet another Gaussian

P (x|k0, µ0,Λ) = x ∼ N

(
µ0,

(
Λ

1 + 1/k0

)−1)
(18)

The next, and final, step is to integrate out Λ, for which the equation is

P (x|n0, k0, µ0,Λ0) =

∫
P (x|k0, µ0,Λ)P (Λ|Λ0, n0)dΛ (19)

where P (x|k0, µ0,Λ) is given by equation 18 and

P (Λ|Λ0, n0) = Λ ∼ W(Λ0, n0) (20)

which is the Wishart distribution. The answer is defined in terms of the
multivariate Student-t3 distribution, which has the density

P (θ|v, µ,Σ) =
Γ((v + d)/2)

Γ(v/2)(vπ)d/2|Σ|1/2

(
1 +

1

v
(θ − µ)TΣ−1(θ − µ)

)−(v+d)/2
(21)

where d is the number of dimensions, v ∈ R, v > 0 the degrees of freedom,
µ ∈ Rd the location and Σ ∈ Rd×d the scale matrix, which is symmetric and
positive definite. Note that this equation involves extremely large values that
cancel out - all implementations should use logarithms to avoid numerical
overflow, and directly calculate the log of the gamma function. For notation

3Unlike the univariate case there is more than one definition of the Student-t distribu-
tion in the multivariate case. The definition given is the most common however.
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θ ∼ T (v, µ,Σ) is used, at least within this document4. Skipping directly to
the answer to equation 19 you get

P (x|nm, km, µm,Λm) = x ∼ T

(
nm − d+ 1, µm,

(
km(nm − d+ 1)

(km + 1)
Λm

)−1)
(22)

which gives the probability of a new sample given the evidence, with the
intermediate draw integrated out. Note that it is easy to avoid inverting Λm
using the rule that |Σ| = |Σ−1|−1.

6 Sampling

Whilst the previous section discussed how to avoid sampling in one useful
situation by integrating the parameters of the Gaussian out it is inevitable
to actually want to draw a sample - this can be divided into two steps -
drawing from a Wishart distribution and then drawing from a multivariate
Gaussian distribution, as in equations 5 and 6.

6.1 Sampling the Wishart distribution

The Bartlett decomposition of Λ ∼ W(V, n) is Λ = LAATLT , where L is
the Cholesky decomposition of V and A is formed of 3 parts - a diagonal,
an upper triangle and a lower triangle. The upper triangle is zeroed out,
the diagonal consists of the square root of draws from ∼ X 2(n− d+ 1), the
Chi-squared distribution, and the lower triangle consists of draws from a
Gaussian, ∼ N (0, 1), i.e.

√
a1 0 0 · · · 0
b21

√
a2 0 · · · 0

b31 b32
√
a2 · · · 0

...
...

...
. . .

...
bd1 bd2 bd3 · · · √ad

 (23)

∀i ∈ [1, d]; ai ∼ X 2(n− d+ 1) (24)

∀i ∈ [1, d], j ∈ [1, d], i > j; bij ∼ N (0, 1) (25)

4A lower-case t is more traditional, but is inconsistent with the other distributions;
also v is often given as a subscript rather than a parameter, which is just stupid.
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For completeness the Chi-squared distributions density is given by

x ∼ X 2(k) =
xk/2−1e−x/2

2k/2Γ(k/2)
, x ∈ R, x ≥ 0, k ∈ N, k > 0 (26)

It is limited by being defined only for k as a positive integer, however,
it is a special case of the Gamma distribution, which allows a continuous
generalisation, specifically

x ∼ X 2(k) = x ∼ Γ(k/2, 1/2) (27)

where the Gamma distributions density is given by5

x ∼ Γ(α, β) =
βαxα−1e−βx

Γ(α)
(28)

6.2 Sampling the Gaussian distribution

This is easily Googleable knowledge, but is included for completeness. Given
x ∼ N (µ,Σ) then x = µ+Az, where A is the Cholesky decomposition of Σ
and z is a vector of draws from N (0, 1).

7 1D equations

All of the previous equations obviously work directly with 1D data without
modification, but for convenience the important equations from above are
now provided in their 1D form, with the relevant simplifications. The 1D
Gaussian can be given by

x ∼ N (µ, σ2) = P (x|µ, σ2) =
exp(−0.5σ−2(x− µ)2)√

2πσ2
(29)

where standard deviation, σ, has been used, such that [σ−2] = Λ. All
quantities are obviously now scalars rather than vectors/matrices.

The Wishart distribution simplifies to become the Gamma distribution,
as given in equation 28

P (σ−2|V, n) =
σ−2(n/2−1) exp(−0.5σ−2V −1)

(2V )n/2Γ(n/2)
(30)

5There are two definitions used in the literature - the version given and a version where
the inverse of β is used instead - it is often not clear which version is in use.
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P (σ−2|V, n) = σ−2 ∼ Γ(
n

2
,

1

2V
) (31)

Drawing from the prior therefore consists of

σ−2 ∼ Γ(
n0
2
,
σ20
2

) (32)

µ|σ2 ∼ N (µ0, σ
2/k0) (33)

and has the four parameters n0, k0, µ0 and σ20.
Performing a Bayesian update is mostly notationally identical with some

slight adjustments due to the use of variance rather than inverse variance,
and consists of

nm = n0 +m (34)

km = k0 +m (35)

µm =
k0µ0 +mx̄

k0 +m
(36)

σ2m = σ20 +
∑

i∈[1,m]

(xi − x̄)2 +
k0m

k0 +m
(x̄− µ0)2 (37)

Integrating out the draw from the distribution again results in a student-
t distribution, but this time the well known univariate case, which is given
by

θ ∼ t(v, µ, σ2) = P (θ|v, µ, σ2) =
Γ((v + 1)/2)

Γ(v/2)σ
√
vπ

(
1 +

(θ − µ)2

vσ2
)

)−(v+1)/2

(38)
The probability of x given the posterior parameters is then

P (x|nm, km, µm, σ2m) = x ∼ t
(
nm, µm,

(km + 1)

kmnm
σ2m

)
(39)

Sampling from the posterior parameters is obvious and involves only basic
functions, hence it is omitted.
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